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ABSTRACT Complexity originates from the tendency of
large dynamical systems to organize themselves into a critical
state, with avalanches or "punctuations" of all sizes. In the
critical state, events which would otherwise be uncoupled
become correlated. The apparent, historical corntingency in
many sciences, including geology, biology, and economics,
finds a natural interpretation as a self-organized critical
phenomenon. These ideas are discussed in the context of
simple mathematical models of sandpiles and biological evo-
lution. Insights are gained not only from numerical simula-
tions but also from rigorous mathematical analysis.

I. Introduction

Complexity lies in the details, but science deals with general-
ities. How, then, can one possibly imagine a science of com-
plexity? The eminent biologist and science writer, Steven Jay
Gould, has articulated this paradoxical question in his book
"Wonderful Life" (1).

How should scientists operate when they must try to explain the
results of history, those inordinately complex events that can
occur but once in detailed glory? Many large domains of
nature-cosmology, geology, and evolution among them-
must be studied with the tools of history. The appropriate
methods focus on narrative, not experiment as usually con-
ceived.

Here, we present a different approach, which invokes the
traditional scientific method, rather than narrative, to study
complex phenomena. We shall argue that self-organized crit-
icality (SOC) (2-5) underlies the widespread appearance of
contingency and complexity in nature. In particular, the sta-
tistics of large-scale behavior obeys fundamental laws of
nature, even though the individual events themselves are
unique. These fundamental laws are "universal" and describe
many different types of systems. We will apply this analysis to
two domains referred to by Gould-namely, geology and
evolution-as well as macroeconomics. This approach asks
different types of questions than the narrative method and
leads to a complementary way of understanding complexity in
nature. This is achieved by rigorous mathematical analysis, as
well as numerical studies, of simple models. Before going into
the details of our method, we will explore, in general terms,
what a science of complexity could be.

History Versus Science. Traditionally, sciences may be
grouped into two categories: "hard" sciences, where repeat-
able events can be predicted from a mathematical formalism
expressing the laws of nature, and "soft" sciences of complex
systems, where only a narrative account of distinguishable
events, in hindsight, is possible. Physics is simple but relatively
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difficult; history is complicated but perhaps easier. Historical
events depend on freak accidents, so that if the tape of history
were replayed many times, the outcome would differ vastly
each time. The mysterious occurrence of incidents leading to
dramatic outcomes has fascinated historians as well as fiction
writers. Would the Second World War have occurred if Hitler
had not been born? Historians explain events in a narrative
language where event A leads to event B because event C
previously had led to events D and E. But suppose that event
C did not happen; then, the course of history would have
changed into another series of events. These would have been
equally well explainable, in hindsight, with a different narra-
tive. History (including that of evolution or geology) depends
on contingency. There is nothing wrong with this way of doing
science, where the goal is an accurate, narrative account of
specific events.

Similarly, as explained by Gould (1), biological evolution
depends on one accidental event after another. If the tape of
biological evolution were to be replayed millions of times, not
once would we see a life form vaguely similar to ours. Con-
tingency rules in the soft sciences, where the concept of
detailed predictability is utterly irrelevant. Thus, the goal of a
science of evolutionary biology cannot be to explain why we
have elephants or humans. Life as we see it today is just one
very unlikely outcome among myriads of other equally unlikely
possibilities. For example, life on earth would probably be
totally different if the dinosaurs had not become extinct,
perhaps as a consequence of a meteor hitting the earth instead
of continuing its benign periodic orbit.

Similar considerations apply to economics, where large
catastrophes may depend on subtle decisions. For example,
Black Tuesday in 1987, when the stock market crashed, may be
attributed to the introduction of programmed trading. The
economist Brian Arthur has beautifully explained how the
dominance of one product over another, such as the VHS
system versus the Betamax system for video recording, de-
pends on minor accidental events (6). These events are unre-
lated to the ultimate performance of the competing systems. If
the tape of technological innovation were to be shown again,
the resulting technology might well be different. Contingency,
again, is the key issue.
A Nonequilibrium Approach. What underlying properties of

history, biology, and economics make them sensitive to con-
tingency? In other words, what common features lead to
interdependence and complexity? Why can accidents occur
that have dramatic global consequences? These questions have
been raised rarely; the narrative account has been considered
to be sufficient explanation.
From a physicist's viewpoint, though, biology, history, and

economics can be viewed as dynamical systems. Each system
consists of many individual parts that interact with each other.
In economics there are many agents, such as consumers,

Abbreviation: SOC, self-organized criticality.
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producers, governments, thieves, and economists. These
agents each make decisions optimizing their own idiosyncratic
goals. The actions of one agent affect other agents. In biology,
individual organisms-or from a more general perspective,
individual species-interact with one another. The actions of
one organism affect the survivability, or fitness, of others. If
one species changes by mutation to improve its own fitness,
other species in the ecology are also affected.

In the past, it has usually been tacitly assumed that these
types of large systems are in stable equilibrium. The leading
economic theory up to now, "general equilibrium theory,"
assumes that perfect markets, perfect rationality, and so on,
bring economic systems into stable "Nash" equilibria. In the
equilibrium state, small perturbations, or shocks, will cause
only small disturbances that eventually dissipate. In this theory,
the system's response to a small impact is proportional to the
size of the impact; equilibrium systems are linear. Large
fluctuations in equilibrium, noisy, systems can occur only if
many random events accidentally pull in the same direction.
This type of accidental concurrence is exponentially unlikely.
As a result, the distribution of fluctuations in equilibrium
systems is Gaussian; large events are sharply cut off.
The general equilibrium paradigm seems to us to be a deeply

flawed picture of economics. The general equilibrium theory
has not been explicitly formulated for biology, but the picture
of nature as being in "balance" prevails in many circles. Nature
is something that can, in principle, be conserved; this idea
motivates environmentalists and conservationists. No won-
der-in a human lifetime very little changes, so equilibrium
concepts may seem natural or intuitive. As pointed out by
Gould and Eldredge (7, 8), though, this apparent equilibrium
is only a period of relative tranquility, or stasis, between
intermittent bursts of activity and volatility.
Although we disagree with Gould's view that the traditional

scientific method is not appropriate to study complex phe-
nomena (1), we completely agree with Gould and Eldredge's
picture of "punctuated equilibrium" (7, 8). We go further, and
propose that physical theories of nonequilibrium behavior in
evolution and economics, for example, can be constructed.
Von Neumann once referred to the theory of nonequilibrium
systems as the "theory of non-elephants." Nevertheless, we
shall attempt such a theory of non-elephants.
SOC. The basic idea is that large dynamical systems naturally

evolve, or self-organize, into a highly interactive, critical state
where a minor perturbation may lead to events, called ava-
lanches, of all sizes (2-5). The system exhibits punctuated
equilibrium behavior, where periods of stasis are interrupted
by intermittent bursts of activity. Since these systems are noisy,
the actual events cannot be predicted; however, the statistical
distribution of these events is predictable. Thus, if the tape of
history were to be rerun, with slightly different random noise,
the resulting outcome would be completely different. Some
large catastrophic events would be avoided, but others would
inevitably occur. No "quick-fix" solution can stabilize the
system and prevent fluctuations. If this picture is correct for
the real world, then we must accept fluctuations and change as
inevitable. They are intrinsic to the dynamics of biology,
history, and economics. For the same reasons, we also abandon
any idea of detailed predictability. In economics, the best we
can do, from a selfish point of view, is to shift disasters to our
neighbors. Large, catastrophic events occur as a consequence
of the same dynamics that produces small, ordinary events.
This observation runs counter to the usual way of thinking
about large events.

Empirically, it was pointed out by Mandelbrot (9-11) that,
for many systems, the statistical probability distribution of
large events is given by the same distribution functions as small
events, implying a common dynamical origin. These distribu-
tion functions are known as Pareto-Levy functions. The prob-
ability of large events is given by the tails of those distributions,

which fall off as power laws-i.e., much slower than Gaussian
distributions. Mandelbrot (12) coined the term "fractal" to
describe scale-free, or power-law, behavior, although he did
not consider the physical origins of these fractals. Neverthe-
less, scientists and others studying the fluctuations of markets
would consistently discard large events as anomalous, since
each could be attributed to specific "abnormal" circumstances.
Contingency was used as an argument for statistical exclusion.
Once the large events are discarded, the remaining events
trivially obey Gaussian statistics, and the general equilibrium
theory can be preserved. As Mandelbrot pointed out, though,
this is like throwing out the baby with the bathwater!
A similar blind spot is found in the field of geology. When

studying earthquakes, scientists almost universally look for
specific mechanisms for large events-again using a narrative,
historical description for each earthquake in isolation. This
occurs despite the fact that earthquakes follow a glaringly
simple distribution function known as the Gutenberg-Richter
law (13). The Gutenberg-Richter law, as shown in Fig. 1, is a
power law for the probability distribution of earthquakes. The
probability to have an earthquake of energy E, P(E), is
proportional to E-b, where b is a characteristic exponent.
When plotted on a log-log scale, such power laws appear as
straight lines where the slope is -b. For comparison, a
Gaussian distribution is also plotted in Fig. 1, and the sharp
cutoff in the tail of the distribution is apparent. The power law
has no cutoff; it is a signature of scale-free, fractal phenomena.
Of course, the statistics of the few large events in the tail of

the earthquake distribution is obviously poor, leading to a
superficial justification for a different treatment of these
events. Similarly, Raup (15, 16) has pointed out that the
distribution of extinction events in biology follows a smooth
distribution where large events, such as the Cretaceous extinc-
tion of dinosaurs, occur with fairly well-defined probability.
Finally, the occurrence of large-scale structure in the distri-
bution of galaxies in the universe has been taken as an
argument against a statistical description of this distribution in
terms of fractals (17). On the contrary, we shall see that
inhomogeneities occur at any scale, including the largest, for
complex dynamical systems. In our view, the present universe
is one ofmany possible outcomes that would emerge if the tape
of the history of the universe were to be run again and again.
Somewhat counterintuitively, the fact that one can come up
with specific narrative explanations for large events does not
preclude the possibility that the statistics of these events follow
regular laws of nature.
The canonical model of SOC is a sandpile onto which sand

is dropped randomly (2-5). The sandpile model will be pre-
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FIG. 1. Distribution of earthquakes in the New Madrid zone in the
southeasternUnited States during the period 1974-1983,collected by
Johnson and Nava (14). This power-law, scale-free behavior is com-
pared to a Gaussian curve, which has a sharp cutoff.
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sented and discussed in Section II. This model can also be
viewed as a model of earthquakes, but more appropriate
models of this and other geophysical and astrophysical phe-
nomena have been constructed. In Section III, a simple model
of biological evolution (18) will be presented and discussed.
With a change of language, this model can be thought of as
representing an economy of interacting, evolving agents. Much
progress has come from numerical simulations of these and
other models, but the model of biological evolution has the
added advantage that it is amenable to analytical studies, as
discussed in Section IV. In collaboration with Sergei Maslov,
we have derived explicit formulae for the self-organization
process (19) and for the statistical properties of the resulting
critical state (20, 21). Progress from this model has been
extended to other self-organized critical models representing
growth phenomena (20-23). We believe that it provides a
general phenomenology for dealing with contingency and
complexity in nature.

II. The Sandpile Paradigm

Can there be a theory of contingency in complex systems? In
1987 one of us, together with Chao Tang and Kurt Wiesenfeld,
constructed a model which has become the paradigm of
self-organized critical behavior. The model represents the
following situation. Consider a pile of sand on a table, where
sand is added slowly, starting from a flat configuration. This is
a dynamical system with many interacting degrees of freedom,
represented by the grains of sand. The flat state represents the
general equilibrium state; this state has the lowest energy.
Initially, the grains of sand will stay more or less where they
land. Eventually, the pile becomes steeper, and small ava-
lanches, or sandslides, occur. The addition of a single grain of
sand can cause a local disturbance, but nothing dramatic
happens. Eventually, the system reaches a statistically station-
ary state, where the amount of sand added is balanced, on
average, by the amount of sand leaving the system along the
edges of the table. In this stationary state, there are avalanches
of all sizes, up to the size of the entire system.
The collection of grains of sand has been transformed from

one where the individual grains follow their own independent
dynamics, to one where the dynamics is global. In the station-
ary state, there is one complex system, the sandpile, rather than
many separate simple grains of sand. Note that in the inter-
mediate state this is not the case. A simple change of the
position where sand is added results only in small, local changes
to the configuration. The response, a small avalanche, is
proportional to the impact. Contingency is irrelevant. Shift a
couple of grains left or right, and the resulting state is only
marginally affected. The flat sandpile (general equilibrium) or
the shallow sandpile does not describe the remarkable, seem-
ingly accidental, occurrence of events; near equilibrium, the
outcome is not contingent on specific minor details.

In the resulting stationary state, though, the situation is
entirely different. A single grain of sand might cause an
avalanche involving the entire pile. A small change in the
configuration might cause what would otherwise be an insig-
nificant event to become a catastrophe. Suppose that at some
point in time there happens to be a large avalanche, causing
devastating destruction to the pile. How would the historian
describe what has happened, and how would the physicist? Let
us first hear the historian's account of the event.
A Historian Describes a Sandslide. "On December 16, 1994,

a grain of sand landed at the site with coordinates [14, 17] on
the pile. Adding to the grains of sand already accumulated at
this site, this addition caused a toppling of that site, spilling
over to the neighboring sites. Unfortunately, one of these sites
[14, 18] happened to be near an instability so that the toppling
caused this site to topple also. This toppling destabilized sites

[14, 19] and [15, 18] and eventually led to the collapse of a large
part of the pile.

"Clearly, the event was contingent on several factors. First,
had the initial grain of sand fallen elsewhere, nothing dramatic
would have happened. Also, if the configuration at position
[14, 19] had been slightly different, the sandslide would have
stopped sooner, without devastating consequences. While we
can give an accurate and complete account of what actually
happened, we are at a loss to explain how these many acci-
dental features could possibly have conspired to produce an
event of such magnitude. The event was contingent upon many
separate, freak occurrences and could clearly have been pre-
vented. Furthermore, we are baffled by the fact that even
though sand had been added to the system for a longtime, only
minor events had occurred before the devastating collapse,
and we had every right to expect the system to be stable.
Clearly, the event was a freak one caused by very unusual and
unfortunate circumstances in an otherwise stable system that
appeared to be in balance. Precautions should and could be
taken to prevent such events in the future."
The physicist now would give a much more boring and

prosaic account of what happened.
A Physicist Describes a Sandslide. "During a long transient

period, the pile evolved to a critical state with avalanches of all
sizes. We were able to make a rough identification of the
toppling rule and to construct a computer model of the
phenomenon. Actually, the particular rule that we use is not
very important. In any case, we do not have sufficient infor-
mation about the details of the system to be able to make
long-term predictions.

"Nevertheless, our model exhibits some general features of
the sandpile. We monitored how many avalanches of each size
occurred, after the addition of a single grain to the pile. We
made a histogram (Fig. 2), and found that the distribution of
events where a total of s sites topple obeys a power law, P(s)
- s-T. Thus, if one waits long enough, one is bound to see
events that are as large as one has the patience to wait for. We
ran our simulations (the tape of evolution) several times.
Eliminating the particular grain of sand that caused a partic-
ular avalanche only made the system produce large avalanches
somewhere else at different times. Changing the rules slight-
ly-for instance, by planting snow screens here and there-
does not have any effect on the general pattern. Avalanches are
an unavoidable and intrinsic part of the sandpile dynamics.

"Actually, I'm not interested in the specific details of the
event which Prof. Historian is so excited about and gives such
a vivid account of. What the professor sees as a string of freak
events appearing accidentally and mysteriously by an apparent
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FIG. 2. Power law distribution for avalanches in the sandpile
model. Power laws appear as straight lines in double logarithmic plots.
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'act of God' and leading to a catastrophe is simply a manifes-
tation of the criticality of the system. History has prepared the
sandpile in a state that is far from equilibrium, and the matrix
through which the avalanche propagates is predisposed to
accommodate events of large sizes. The complex dynamics
which is observed in the 'historical science,' where the outcome
appears contingent on many different, specific events, repre-
sents the dynamics of self-organized critical systems."

Universality. Incidentally, the historian is able to make
short-term predictions by carefully identifying the rules and
monitoring his local environment. If he sees an avalanche
coming he can predict when it will hit with some degree of
accuracy. His situation is similar to that of the weatherman: by
experience and data collection he can make forecasts, but this
gives him no insight into how the climate works. For instance,
he does not understand the statistical fluctuations of sunshine,
rain, etc.
A computer sandpile model, like the one mentioned above,

can easily be constructed. The underlying philosophy is that
general features, like the appearance of large catastrophes, and
perhaps critical exponents, are not sensitive to the details of
the model. Since we understand so little about these kinds of
systems, we allow ourselves to study the simplest models that
could possibly represent the phenomena under consideration.
One guiding principle of physics is the concept of universality.
What this means is that important features of large-scale

phenomena are grossly insensitive to the particular details of
the models and are shared between seemingly disparate kinds
of systems. This concept of universality has served well in the
study of equilibrium phenomena; in particular, it has been
crucial to understanding phase transitions. Of course, we have
to demonstrate that our models are robust and insensitive to
changes in the rules. If, unfortunately, it turns out that they are
not, we are back to the messy situation where detailed engi-
neering-type models of the horrendously complex phenomena
is the only possible approach (i.e., the weatherman's ap-
proach), and the field is no place for a physicist to be.
The Sandpile Model. The sandpile model is defined as

follows. The height of the pile at the point with coordinates (i,
j) is denoted Z(i, j). Each height has an integer value. At each
time step, the height at some random point is increased by
unity, Z -* Z + 1. If the height at that site now exceeds an
arbitrary critical height, Zcr, then a toppling event occurs,
where the height of the unstable site is reduced by 4 units and
the height at each of the four neighbors on the square lattice
is increased by 1 unit. This is true except along the boundaries
where sand is thrown out of the pile. If any of the neighboring
sites are now unstable (Z > Zcr), the process continues until
none of the Z values in the system exceeds the critical value.
Then the avalanche is over, and a new avalanche can be started
by adding another grain of sand to the system. The total
number of topplings during the avalanche is counted; this

FIG. 3. Evolving avalanche in sandpile model. (A) The configuration before a grain of sand is dropped. The various colors indicate heights 0-3,
with 3 being the critical height. (B-D) Snapshots during the avalanche. The red color indicates sites that have toppled. Yellow sites are active, toppling
sites. (Figure courtesy of M. Creutz.)
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number, s, is the size of the avalanche. That is all! Fig. 3 shows
snapshots of a propagating large avalanche.
The sandpile model has been generalized to represent

earthquakes (24) or even starquakes (26). A modified version
has been applied to economics (27). It was demonstrated that
small shocks may lead to large avalanches of economic activity.
The SOC behavior of these models has been documented by
computer simulations. A few interesting analytical results have
also been obtained, mostly by Deepak Dhar (28, 29). For
example, Dhar was able to count the number of configurations
in the stationary state. However, no analytical results for
critical behavior, such as the value of the exponent T, exist.
Nevertheless, the sandpile picture has served well in providing
an intuitive picture of SOC, traveling far beyond the physics
community, and applied to many different kinds of situations.
As Vice President Albert Gore has observed in his recent book
(30), "The sandpile theory-self-organized criticality-is irre-
sistible as a metaphor..."
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III. Punctuated Equilibrium and SOC in Evolution

Some empirical observations indicate that biology operates in
a critical state. This has been documented recently in great
detail, and we refer the interested reader to that paper (31) for
a more complete discussion. Fig. 44 shows the pattern of
extinction events from the fossil history, as recorded by J. J.
Sepkoski (32). There are long periods of relatively little activity
interrupted by narrow intervals, or bursts, with large activity.
Raup (15, 16, 33, 34) has plotted the data for the bursts as a
histogram, as shown in Fig. 4B; this histogram suggests that the
frequency of large events follows smoothly from the proba-
bility of small events. The histogram indicates that both large
and small extinction events have a common dynamic origin.
The distribution of extinction events of size s can roughly be
interpreted as a power law, P(s) - s T, where 1 , X S 2. Also,
the distribution of lifetimes of fossil genera appears to obey a
power law. The apparent punctuated equilibrium behavior
both with respect to behavior of many species (or mass
extinction events) and with respect to the behavior of single
species indicates that both are collective effects involving many
interacting degrees of freedom. They are two sides of the same
coin.
A general theory or model of biological evolution must

necessarily be abstract. It must, in principle, be able to describe
all possible scenarios for evolution. For instance, it should be
able to describe life on Mars, if it were to occur. This, of course,
is an extremely precarious step. Only intuition can tell us what
is important and what is not. The model cannot have any
specific reference to actual species. It may, perhaps, not even
refer to basic chemical processes or to DNA. It is precisely
because of contingency that we cannot expect the theory to
produce anything specific that is actually observed, in marked
contrast to traditional theories. Biologists will complain that
our models do not produce elephants.
We shall discuss a particularly simple toy model of an

ecology of evolving species, the Bak-Sneppen (BS) model
(18). The underlying picture is one where species interact with
each other. When evolving to improve their fitness, presumably
through random mutations, followed by selection of the fitter
variants, they affect the fitness of other species in the global
ecology. For a discussion of the general philosophy, see
Kauffman's book (35).
For simplicity and bookkeeping, species are placed on a

d-dimensional square lattice. The function of the lattice is to
define who is interacting with whom: each species interacts
with its 2d nearest neighbors. The one-dimensional case can be
thought of as a food chain. Initially, the species are assigned
random numbers, fi, from 0 to 1. fi represents the fitness of
species i. It does not really matter what the starting point is. At
each step the site i with the lowest fitness is chosen, and its
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FIG. 4. (A) Extinction events recorded over 600 million years
[reproduced from Sepkoski (32) with permission (copyright Paleobi-
ology)]. The curve shows the estimated percentage of species that
became extinct during consecutive intervals of 5 million years. Geo-
logic periods are indicated: C, Cambrian; 0, Ordovician, S, Silurian;
D, Devonian; C, Carboniferous; P, Permian; TR, Triassic; J, Jurassic;
K, Cretaceous; T, Tertiary. (B) Histogram of the same events [repro-
duced from Raup (15) with permission (copyright AAAS)].

number fi is replaced by a different random number, which is
somewhere between 0 and 1. This step represents either a
mutation to a different species, or the extinction of a species
followed by replacement of another species in the same
ecological niche. It mimics the Darwinian principle (36) that
the least fit species become extinct. The random numbers at
the 2d nearest neighbor sites are also replaced with new
random numbers between 0 and 1. The fitness of the neighbors
is contingent upon the properties of the species with which they
interact. Thus, their happy and stable life (with maybe high
random numbers) might become undermined by weak neigh-
bors, so that they become next in line for extinction.
The model is so general that it can also be thought of as a

model for macroeconomics. The individual sites represent
economic agents, and the random numbers f1 represent their
"utility functions." Agents modify their behavior to increase
their wealth. The agents with lowest utility functions disappear
and are replaced by others. This, in turn, affects other agents
and changes their utility functions.
What could be simpler and have less structure than replacing

some random numbers with other random numbers? Despite
the simplicity of the model, its analysis is amazingly rich. After
many updates have occurred, the ecology reaches a state in

I

Colloquium Paper: Bak and Paczuski



6694 Colloquium Paper: Bak and Paczuski

1 .-U . . . _- -

100 200
x

)nn

.5

0

E 0
0

4.4

U
300 0 100

lime

200

FIG. 5. Snapshot of f vs. position x during an avalanche in the
evolution model. Mostfvalues are above the critical value. The cluster
of active sites with f < f, participate in the avalanche and undergo
frequent changes.

which the density of species with fitnesses below a critical value
fc is zero. Species are uniformly distributed with fitness above
f,. No random number abovefc is ever chosen to mutate on its
own. This stationary state is punctuated by avalanches, where,
locally, the random numbers are less thanf,; see Fig. 5. During
an avalanche, a great deal of rapid activity occurs in which
species come and go at a fast pace. Nature "experiments" until
it finds another "stable" ecology with high fitnesses. The
Cambrian explosion 500 million years ago can be thought of as
the grandmother of all such avalanches.

Fig. 6 shows the activity pattern in the ld model. It is a

fractal in space and time. Note the appearances of holes of all
sizes between subsequent returns of activity to a given site.
These holes represent periods of stasis where a species does not
mutate or become extinct. Fig. 7 shows the integrated activity
along the time axis at one particular site. This figure illustrates
punctuated equilibrium behavior for a single species. We
believe that this punctuated equilibrium behavior, first noted
by Gould and Eldredge (7, 8), is common to all complex
dynamical systems. The punctuations for single species are

correlated to the avalanches in the global ecology.
In contrast to real biological evolution, in the computer

evolution model the tape of Life may be rerun many times. It
is easy to go back and find the event which triggered the
punctuation starting at s 100 in Fig. 7. What would have
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FIG. 6. Fractal cluster of activity in the ld evolution model. The
horizontal axis is a row of lattice sites; the vertical axis is time, s, or the
number of update steps (22, 23).

FIG. 7. Accumulated number of changes, or mutations, at a single
site in the stationary state. The curve exhibits punctuated equilibrium
behavior, with periods of stasis interrupted by intermittent bursts. The
large bursts are correlated with large avalanches. The lower curve
shows the result of rerunning the tape of evolution. A single update
event, at the beginning of a large avalanche, was cancelled. This led to
dramatically different behavior in the replay, demonstrating contin-
gency.

happened if that event had not occurred? Thus, we simply skip
one update step in our simulation but choose the same random
numbers as before for all subsequent updates. Fig. 7 also shows
the alternative run. Indeed, this change prevented the large
avalanche, but other disasters happened instead, at a different
point in time. In a noncritical, noninteractive biology, the
effects of contingency are much less dramatic. So if we study
the evolution model during the transient period before the
system reaches criticality, we find evolution to be gradual,
without large punctuations, and rerunning the tape with small
modifications leads to the same history. In a noncritical
biology, a meteor may not have been sufficient to trigger a

major extinction event.

IV. Analytical Results

The evolution model is fascinating to theorists wanting to
understand self-organized criticality. In contrast to sandpile
and earthquake models, it has yielded to analytical mathe-
matical efforts. These efforts include mean-field results by
Flyvbjerg and coworkers (37, 38), a conjecture that the
model can be related to Reggeon field theory (39) from
high-energy physics that was made independently by us (19)
and by Ray and Jan (25), and, finally, exact results, which we
discuss here. In collaboration with Sergei Maslov, we have
derived three fundamental equations that describe the pro-
cess of self-organization (19), the hierarchical structure of
the avalanches, and the stationarity condition (20, 21),
respectively.
The Self-Organization Process: The Gap Equation. The

critical stationary state is approached algebraically, through
transient states. Let us consider the situation where the
distribution off values initially is uniform in the interval 0
to 1 in a d-dimensional system of linear size L. The first value
off to be chosen for updating is O(L-d). Eventually, after s

time steps, a gap G(s) opens up in the distribution off values.
We define the current gap, G(s), to be the maximum of all
minimum random numbers chosen, fmin(s'), for all 0 c s' <
s. Fig. 8 shows fmin as a function of s during the transient for
a small system. The full line shows the gap G(s) as a

monotonically increasing function of s. By definition, the
separate instances when the gap G(s) jumps to its next higher
value are separated by avalanches. The average size of the
jump in the gap at the completion of each avalanche is [1 -
G(s)]/Ld. Consequently, the growth of the gap versus time,
s, obeys the following gap equation (19):
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FIG. 8. The self-organization process in a small system.fmin vs. time
s is shown (crosses). The full curve shows the gap, max[fmin(s)]. The gap
approaches the critical value fc asymptotically. Subsequent points (0)
where the gap increases are separated by avalanches during whichfmin
is lower. On average, the avalanche size grows as the critical value is
approached.

aG(s) 1-G(s)
as Ld(S)G(s)- [1]

As the gap increases, so does the average avalanche size (S),
which eventually diverges as G(s) *,, whereupon the model
is critical and the process achieves stationarity. In the limit L

00, the density of sites with f < f, vanishes, and the
distribution off values is uniform above fc. The gap equation
1 defines the mechanism of approach to the self-organized
critical attractor. It contains the essential physics of SOC
phenomena. When the average avalanche size diverges, (S)
a), the system becomes critical. At the same time, aG/as
approaches zero, which means that the system becomes sta-
tionary. When interpreting actual biology, we assume that the
transient took place long ago, so that throughout the evolu-
tionary history that is observed in the fossil record, biology has
been critical.

In order to solve the gap equation we need to determine
precisely how the average avalanche size (S)G(s) diverges as the
critical state is approached. Numerically, we find (S)G(s) - (fC
- fo)-Y, with y 2.7 in one dimension. Inserting this into Eq.
1 and integrating, we find

Af = fc - G(s) - (S/Ld) T-, [2]

which shows that the critical point (Af = 0) is approached
algebraically with an exponent 0.58 in one dimension.

Hierarchy of Avalanches: The Gamma Equation. Consider
the stationary SOC state, and let QP(f) be the probability to
have an f avalanche separating consecutive points in time
where the minimum random number chosen is greater than f
An avalanche of spatial extent r, by definition, leaves on
average (rd) sites with new uncorrelated random numbers
between f and 1. If f is increased by a small amount df, the
differential in the probability that anf + df avalanche will not
end at the same time as the f avalanche is determined by the
probability that any of the new random numbers generated by
the avalanche fall within dfoff This probability is df(rd)/(1 -

f). We thus obtain the rigorous result, the "gamma" equation:

d(ln QI) (rd)fd =I91 rfforf<fc. [3]df 1-f'
Since close to fc, ?P(f) AAfY, where Af = fc - f, the
fundamental relation (20, 21)

(rd)Af r

[4]

holds for Af -O 0. Surprisingly, the quantity y which enters in
the gap equation, here appears as a constant rather than a
critical exponent. It is the number of random numbers between
f and fc left behind by an f avalanche that has died. Thus (rd)
- A f-'Y, where y± = 1. The gamma equation (Eq. 4) gives a
convenient way to determine the critical point accurately.
When (1 - f)/(rd) is plotted vs.f, the slope is equal to 1/y and
the intersection with the f axis is f. We find y- 2.7 and fc =
0.66695 ± 0.00005 (Fig. 9). Thus, contrary to early specula-
tions, it is unlikely that the critical fc is exactly 2/3.

Stationarity: q = 0. The next equation utilizes the station-
arity of the process to relate the activity within running
avalanches to the size distribution of avalanches (20, 21).
Suppose that at some point in time an avalanche starts by
"injecting" a single site into the gap; i.e., initially only one site
has fitness less that fc. On average, how large is the number
(n(s)) of active sites after s update steps? Active sites are
defined to be those sites that have random numbers less than
fc, and the average is taken over all avalanches, including those
that die out.

This question has an interesting similarity with the following,
seemingly unrelated, problem: suppose a gambler in Las Vegas
plays on a "fair" roulette wheel, where the probabilities of
"red" and "black" are each 1/2. He starts with one dollar, and
as long as he has money left, he plays one dollar at each run
of the roulette. How much money can he expect to have left
after s roulette runs? In both cases, the answer is essentially
one unit. Both processes are stationary critical branching
processes. At each point in time, stationarity demands that the
average number of active sites is constant, so that (20, 21)

(n(s)) - s', with 7q = 0. [5]

This utterly simple but very deep equation is the "eta"
equation. In spite of its simplicity, it is a highly nontrivial result;
critical branching processes, in general, do not have q = 0.
Each injected particle gives rise to an avalanche, with size
distribution s-T. The average activity, over all avalanches, after
s steps is the product of the activity of surviving avalanches and
the probability for an avalanche to survive s steps. One
consequence of the eta equation is that the growth of activity
in surviving avalanches, n(s), must exactly compensate the
avalanches that have died; i.e., n(s) S-T+1. Thus, the internal
structure of the avalanches is related to the duration of
avalanches. For the gambler, the longer he plays, the less is his
chance of survival. This is compensated by the fact that if he
survives, his return is growing bigger. The exponent T for the
gambler is 3/2. For the ld evolution model the exponent is 1.1;
in two dimensions it is 1.26.
We have conjectured (19) that the exponent T for the

evolution model is the same as the exponent Tin Reggeon field
theory, a quantum field theory from high-energy physics. Fig.

0.62 0.63 0.64 0.65 0.66
f

FIG. 9. Plot of (1 -f)/(rd) vs. f in the Id evolution model. The
inverse slope gives the exponent f axis gives f, = 0.66695.
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log s

FIG. 10. Average number of active sites (n) s time steps after the
initiation of a single avalanche (lower curve) in the 2d evolution model.
The curve approaches a constant, indicating q = 0. The upper curve

shows the (larger) number of active sites in surviving avalanches, n(s)
S-T+1 (20, 21).

10 also shows the growth of activity in surviving clusters,
increasing with the exponent T = 1.26. Actually, for the random
neighbor model studies by Flyvbjerg et al, (37) and by de Boer
et al. (38), the exponent is also 3/2. The equivalence of the
situation of the gambler with evolution, in "mean-field," is not
accidental. We survive by chance and coincidence rather than
by merit. Whatever fairness exists is statistical; both the fair
roulette wheel and evolution have 7 = 0.

These equations, and other general considerations, lead to
an alphabet soup of scaling relations for various physical
quantities, such as the fractal dimension of the avalanche, D,
in Fig. 6, the fractal dimension of active sites which have
fitnesses less than the critical value, df, and the power spectrum
of the local activity, S(f). All of the critical exponents can be
expressed in terms of two fundamental exponents, D and T.

These two independent exponents are possibly given by Reg-
geon field theory. In conclusion, we have a rather complete
description of the self-organization process and the resulting
critical properties in the stationary attractor. The hope is that
insight derived from the detailed study of this particular model
can be extended to produce a more general phenomenological
theory of complexity in nature. That theory will not be
beautiful; it trivializes all the nuances and details that make
complex systems exciting for humans. These details become
just one possible realization among many other possibilities
allowed by the theory.

This work was supported by the U.S. Department of Energy,
Division of Materials Science, under contract DE-AC02-76CH00016.
M.P. thanks the U.S. Department of Energy Distinguished Postdoc-
toral Research Program for financial support.

1. Gould, S. J. (1989) Wonderful Life (Norton, New York).
2. Bak, P., Tang, C. & Wiesenfeld, K. (1987) Phys. Rev. Lett. 59,

381-384.
3. Bak, P., Tang, C. & Wiesenfeld, K. (1988) Phys. Rev. A 38,

364-374.
4. Bak, P. & Chen. K. (1991) Sci. Am. 264, 46-53.
5. Bak, P. & Paczuski, M. (1993) Phys. World 6, 39-43.
6. Arthur, B. (1990) Sci. Am. 2, 92-99.
7. Gould, S. J. & Eldredge, N. (1977) Paleobiology 3, 114-151.
8. Gould, S. J. & Eldredge, N. (1993) Nature (London) 366, 223-

227.
9. Mandelbrot, B. (1963) J. Bus. Univ. Chicago 36, 394.

10. Mandelbrot, B. (1964) J. Bus. Univ. Chicago 37, 393.
11. Mandelbrot, B. (1960) Int. Econ. Rev. 1, 79.
12. Mandelbrot, B. B. (1983) The Fractal Geometry of Nature (Free-

man, New York).
13. Gutenberg, B. & Richter, C. F. (1956) Ann. Geofis. 9, 1.
14. Johnston, A. C. & Nava, S. J. (1985) J. Geophys Rev. B 90, 6737.
15. Raup, D. M. (1986) Science 231, 1528-1533.
16. Raup, D. M. (1991) Bad Genes orBad Luck (Norton, New York).
17. Peebles, P. J. E. (1989) Physica D 38, 273-278.
18. Bak, P. & Sneppen, K. (1993) Phys. Rev. Lett. 71, 4083-4086.
19. Paczuski, M., Maslov, S., & Bak, P. (1994) Europhys. Lett. 27,

97-100.
20. Paczuski, M., Maslov, S. & Bak, P. (1995) Phys. Rev. E, in press.
21. Paczuski, M., Bak, P. & Maslov, S. (1995) Phys. Rev. Lett. 74,

4253-4256.
22. Maslov, S., Paczuski, M. & Bak, P. (1994) Phys. Rev. Lett. 73,

2162-2165.
23. Maslov, S. & Paczuski, M. (1994) Phys. Rev. E 50, 643-646.
24. Olami, Z., Feder, H. J. S. & Christensen (1992) Phys. Rev. Lett.

68, 1244-1247.
25. Ray, T. S. & Jan, N. (1994) Phys. Rev. Lett. 72, 4045-4048.
26. Morley, P. D. & Garcia-Pelayo, R. (1993) Europhys Lett. 23,

185-189.
27. Bak, P., Chen, K., Scheinkman, J. & Woodford, M. (1993) Ric.

Econ., 3-30.
28. Dhar, D. (1990) Phys. Rev. Lett. 64, 1613-1616.
29. Majumdar, S. N. & Dhar, D. (1992) Physica A 185, 129-145.
30. Gore, A. (1992) Earth in the Balance (Houghton Mifflin, Boston).
31. Sneppen, K., Bak, P., Flyvbjerg, H. & Jensen, M. H. (1995) Proc.

Natl. Acad. Sci. USA 92, 5209-5213.
32. Sepkoski, J. J., Jr. (1993) Paleobiology 19, 43-51.
33. Raup, D. M. & Sepkoski, J. J., Jr. (1982) Science 215, 1501-1503.
34. Raup, D. M. & Boyajian, G. E. (1988) Paleobiology 14, 109-125.
35. Kauffman, S. A. (1993) The Origins of Order: Self Organization

and Selection in Evolution (Oxford Univ. Press, Oxford).
36. Darwin, C. (1910) The Origin of Species by Means of Natural

Selection (Murray, London), 6th Ed.
37. Flyvbjerg, H., Sneppen, K. & Bak, P. (1993) Phys. Rev. Lett. 71,

4087-4090.
38. de Boer, J., Derrida, B., Flyvbjerg, H., Jackson, A. & Wettig, T.

(1994) Phys. Rev. Lett. 73, 906-909.
39. Grassberger, P. & de la Torre, A. (1979) Ann. Phys. (N.Y) 122,

373.

Proc. Natl. Acad. Sci. USA 92 (1995)


