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FORMALISM: DO
MATHEMATICAL STATEMENTS
MEAN ANYTHING?

£ YASUAL observation reveals, or seems to reveal, that much
\_ mathematical activity consists of the manipulation of linguistic
symbols according to certain rules. If someone doing arithmetic
establishes a sentence in the form a X b =¢, then he can write the
corresponding b x a = c. If he also gets to a sentence like a # 0, then
he is entitled to write ¢c/a =b. The elementary and advanced parts
of mathematics alike have this feature of at least appearing as rule-
governed manipulation.

What is the significance of this observation about the practice
of mathematics? The various philosophies that go by the name
of ‘formalism’ pursue a claim that the essence of mathematics is
the manipulation of characters. A list of the characters and
allowed rules all but exhausts what there is to say about a given
branch of mathematics. According to the formalist, then, math-
ematics is not, or need not be, about anything, or anything
beyond typographical characters and rules for manipulating
them.

Formalism seizes on one aspect of mathematics, perhaps neg-
lecting or downplaying all else. For better or worse, much elem-
entary arithmetic is taught as a series of blind techniques, with little
or no indication of what the techniques do, or why they work.
How many schoolteachers could explain the rules for long division,
let alone the algorithm for taking square roots, in terms other than
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the execution of a routine? But perhaps this is more of a critique of
some pedagogy than an attempt to justify a philosophy.’
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among philosophers of mathematics. Throughout history, math-
ematicians have had occasion to introduce symbols which, at the
time, seemed to have no clear interpretation. The very names
'negative numbers’, ‘irrational numbers’, ‘transcendental numbers’,
‘imaginary numbers’, and ‘ideal points at infinity’ indicate ambiva-
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of bold, imaginative souls, but it seems that more sceptical folk
provide the names. Although the newly introduced ‘entities’ proved
useful for applications within mathematics and science, in their
philosophical moments some mathematicians did not know what
to make of them. What are imaginary numbers, really? A common
response to such dilemmas is to retreat to formalism. The mathem-
atician asserts that symbols for complex numbers, for example, are
to be manipulated according to (most of) the same rules as real
numbers, and that is all there is to it.

Mathematicians themselves, however, do not always develop
their philosophical positions in depth. One of the most detailed
articulations of the basic versions of formalism is found in Gottlob
Frege’s (1893: §86-137) vigorous critique of the view.

1. Basic Views; Frege’s Onslaught
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historical claim to the title formahsm . Although the philosophies
stand in opposition to each other in crucial ways, both opponents
and defenders of formalism sometimes run them together.

nere are at

' The advent of calculators may increase the tendency toward formalism. If
there is a question of justifying, or making sense of, the workings of the calculator,
it is for an engineer (or a physicist), not a teacher or student of elementary
mathematics. Is there a real need to assign ‘meaning’ to the button-pushing? We
hear (or used to hear) complaints that calculators ruin the younger generation’s
ability to think, or at least their ability to do mathematics. It seems to me that if
the basic algorithms and routines are taught by rote, with no attempt to explain
what they do or why they work, then the children might as well use calculators.
Formalism cuts deeply.
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1.1. Terms

Term formalism is the view that mathematics is about characters or
symbols—the systems of numerals and other linguistic forms. That
is, the term formalist identifies the entities of mathematics with
their names. The complex number 8 + 2i is just the symbol
‘8 + 2i". A thorough term formalist would also identify the natural

number 2 with the niume ra] ’7 hnr nprhanc one can hp a ‘Fnrma]mr
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about some branches of mathematlcs and not others. One might
adopt formalism only for those branches that one is queasy about.

According to term formalism, then, mathematics has a subject-
matter, and mathematical propositions are true or false. The view
proposes simple answers to (seemingly) difficult metaphysical and

epistemological problems with mathematics. What is mathematics

about? Numbers, sets, and so on. What are these numbers, sets, and
so on? They are linguistic characters. How is mathematics known?
What is mathematical knowledge? It is knowledge of how the
characters are related to each other, and how they are to be
manipulated in mathematical practice.

Consider the simplest possible equation:

0=0.

Presumably it comes out true. How does the term formalist inter-
pret it? She cannot say that the equation says that the leftmost hunk
of ink (or burnt toner) shaped like an oval is identical to the right-
most hunk of ink also shaped line an oval. Clearly, those are two
different hunks of ink.

The term formalist might take the equation to assert that those
two hunks of ink have the same shape. But this seems to presup-
pose the existence of entities called ‘shapes’. When discussing lin-
guistic items like letters and sentences, contemporary philosophers
distinguish types from tokens. Tokens are physical objects made up
of ink, pencil, chalk marks, burned toner, and so on. As physical
objects, they can be created and destroyed at will. Types are the

abstract forms of tokens. The word ‘concatenation’ has two

Ao vd A VY WA e iivAvvaAaiARvasaa

instances of the one type ‘c’. The type ‘c’ is shared by all letter-
tokens of that shape. When we say that the Roman alphabet has
twenty-six letters, we are talking about the types, not the tokens.
The statement would remain true if every token of the letter ‘a’
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were destroyed. From this perspective, the term formalist might
assert that mathematics is about types. The above equation would
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The equation says that the type ‘0’ is identical with itself.

What are we to make of these shapes or types? Notice that
shapes and types are abstract objects, much like numbers. What,
then, is the advantage of term formalism over realism in ontology
that asserts the existence of numbers outright? Perhaps the term
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forward instances, their tokens, and we learn things about them
through their tokens.

A rudimentary term formalism was put forward (at least tem-
porarily) by two mathematicians, E. Heine and Johannes Thomae,
around the turn of the twentieth century Heine (1872' 173) wrote,

gl'v't“: the name numbers to certain t angmlc Sig“uS, so that the exist-
ence of these numbers is thus unquestionable’. Thomae (1898: §§1-
11) claimed that the formal standpoint rids us of all metaphysical
difficulties; this is the advantage it affords us’. This remains to be
seen.

Frege (1893: §§86-137) launched a sustained articulation of, and
harsh attack on, their views. Consider the equation:

5+7=6+6.

What can this come to? Perhaps it means that the symbol 5 + 7" is
identical to the symbol ‘6 + 6’. But this is absurd. Even the types are
different. The former ‘5 + 7’ has an occurrence of the type ‘5’ and
the latter ‘6 + 6" does not. It is not open to the formalist to claim
that the two symbols denote the same number, since the central
thesis of term formalism is that we need not consider extra-
linguistic entities that the terms supposedly denote. All that matters
are the characters. They denote themselves. So the term formalist
cannot interpret the “ =’ sign as identity. On behalf of term formal-
ism, Frege suggests that the equation be interpreted as saying that
in arithmetic, the symbol ‘S + 7’ can be substituted anywhere for
‘6 + 6 without a change in truth-value. That is, a sentence of the
form A =B says that the symbol corresponding to A is inter-
substitutable with the symbol corresponding to B in any mathemat-
ical context. So the above identity ‘0 = 0" asserts the truism that the
type ‘0’ can be substituted for itself without a change in truth-
value.
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Term formalism can perhaps be extended to the integers and
rational numbers, but what are the real numbers supposed to be?

. - 13 . .
We cannot identify them with their names, since most real num-

bers do not have names. A term formalist might attempt to identify
the real number 7 with the Greek letter “7’, but what would he say
about real numbers that do not have names? How would he under-
stand a statement about all real numbers? A straightforward
attempt would be to identify 7t with its decimal expansion: 3.14159
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guistic symbol. The term formalist might introduce a theory of
‘limits” of terminating decimals, and identify m with the ‘limit’ of
the symbols 3°, 3.1°, '3.14°, . . . If this route is followed, however, it
is hard to see any advantage of term formalism. The ‘limit” of the
symbols looks too much like the ordinary understanding of m as
the limit of the rational numbers 3, 3.1, 3.14, . .. We seem to have
lost the sense of formalism.

Suppose that the term formalist manages to solve this problem
and come up with a decent linguistic surrogate for real numbers.
Still, the view only captures mathematical calculation. How is the
term formalist to make sense of mathematical propositions, like the
prime number theorem or the fundamental theorem of calculus? In
what sense can those be said to be about symbols?

1.2. Games

The other basic version of formalism likens the practice of math-
ematics to a game played with linguistic characters. Just as, in chess,
one can use a pawn to capture one square forward on a diagonal, so
in arithmetic one can write ‘x = 10’ if one has previously gotten to
‘x =8+ 2°. Call this game formalism.

Radical versions of this view assert outright that the symbols of
mathematics are meaningless. Mathematical formulas and sen-
tences do not express true or false propositions about any subject-
matter. The view is that mathematical characters have no more
meaning than the pieces on a chessboard. The ‘content’ of math-

ematics is exhausted by the rules for operating with its language.
More moderate versions of game formalism concede that the lan-
guages of mathematics may have some sort of meaning, but if so,
this meaning is irrelevant to the practice of mathematics. As far as
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the working mathematician is concerned, the symbols of math-
ematical language may as well be meaningless.

The difference hetween radical and maoderate vercinne nf oame
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formalism has little significance for the philosophy of mathematics.
The two views agree on the lack of mathematical interpretation for
the typographical characters of a branch of mathematics. Against
this, the term formalist holds that mathematics is about its
terminology.
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difficult metaphysical and epistemological problems with math-
ematics. What is mathematics about? Nothing. What are numbers,
sets, and so on? They do not exist, or they might as well not exist.
How is mathematics known? What is mathematical knowledge? It
is knowledge of the rules of the game, or knowledge that certain
moves that accord with these rules have been made. The equation
2! =1024" and the theorem that for every natural number x there
is a prime number y > x (in symbols, Vxdy(y > x & y is prime) )
each indicate the outcome of a certain play in accordance with the
rules of arithmetic.’

In the context of game formalism, the phrases like ‘language’
and ‘symbol’ are misleading. In just about any other context, the
purpose of language, first and foremost, is to communicate. We use
language to talk about things, usually things other than language
itself. In its normal usage, a symbol symbolizes something. The word
‘Stewart’ stands for the person Stewart. So one would think that the
numeral 2" stands for the number 2. This is just what the game
formalist denies, or demurs from. Either the numeral does not
stand for anything, or else it might as well not stand for anything.
For mathematics, all that matters is the numeral, and the role of
the numeral in the game of mathematics.

It is ironic that Frege’s own work in logic (see ch. 5, §1) gives
impetus to a sophisticated version of game formalism. Frege
claimed that one of the purposes of his logic was to codify correct
inference. To determine the epistemic significance of a derivation,
there can be no ‘gaps’ in the reasoning; all premisses must be made

=

? Since Wittgenstein 1953, there has been much philosophical discussion of
rule-following. What is it for someone to be following one rule, rather than
another? Can we distinguish the following of one rule incorrectly from the follow-
ing of a different rule correctly? See, for example, Kripke 1982. If there is an issue
here, it is a problem for any philosophy of mathematics, not just game formalism.
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explicit. For this purpose, Frege developed a formal system, or to be
precise, he presented a deductlve system that could be understood
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a calculus by means of a small number of standard moves, so that
no step is permitted which does not conform to the rules which are
laid down once and for all?’ (Frege 1884: §91, emphasis mine). Frege
was aware that this feature could feed a version of formalism:
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Now it is quite true that we could have introduced our rules and other
laws of the Begriffsschrift [e.g. Frege 1879] as arbitrary stipulations, without
speaking of the meaning and the sense of the signs. We would then have
been treating the signs as ﬁgures What we took to be the external repre-
sentation Uf an inference would then be comparabic t0 a move in Lllcbb,
merely the transition from one configuration to another. We might give
someone our [axioms] and ... definitions ... —as we might the initial
position of the pieces in chess—tell him the rules permitting transform-
ations, and then set him the problem of deriving our theorem . . . all this
without his having the slightest inkling of the sense and meaning of these

signs, or of the thoughts expressed by the formulas . . . (Frege 1903: §90)

Frege pointed out that the meaning that we attribute to the sen-
tences is what makes them interesting, and that this meaning sug-
gests strategies for the derivations. The game formalist might agree
with this, but will add that the meaning of mathematical expres-
sions is extraneous to mathematics itself. As far as mathematics
goes, all that matters is that the rules are followed. Meaning is
merely heuristic, no more than a psychological aid. Mathematics
need have no subject-matter at all.

The game formalist, however, is left with a daunting problem.
Why are the mathematical games so useful in the sciences? After
all, no one even looks for useful applications of chess. Why think
that the meaningless game of mathematics should have any appli-
cations? It clearly does, and we have to explain those applications. A
similar problem arises for applications of mathematics within
mathematics. Why is the game of complex analysis useful in the
game of real analysis or arithmetic? This issue is all the more troub-

ling for someone who is a game formalist about, say, complex

analysis, but not about real analysis or arithmetic.

In this sense, game formalism is much like a philosophy of sci-
ence called instrumentalism, which was designed to alleviate worries
about unobserved theoretical entities, like electrons. According to
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instrumentalism, theoretical science is no more than a complicated
instrument for making predictions about the observable, physical

world. The scientist need not believe that theoretical entities exist.

The instrumentalist is thus spared the epistemological problem of
accounting for our knowledge of theoretical entities, but she is left
with a gaping problem of explaining just why the instrument works
so well, or why it works at all. Similarly, the game formalist is spared
the problem of saying what mathematics is about, and perhaps she
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but the issue of why mathematics is useful now looks intractable.
Frege’s (1903: §91) main criticism of game formalism goes along
these lines:

an arithmetic without thought as its content will also be without possibil-
ity of application. Why can no application be made of a configuration of
chess pieces? Obviously, because it expresses no thought. If it did so and
every chess move conforming to the rules corresponded to a transition
from one thought to another, applications of chess would also be conceiv-
able. Why can arithmetical equations be applied? Only because they
express thoughts. How could we possibly apply an equation which
expressed nothing and was nothing more than a group of figures, to be
transformed into another group of figures in accordance with certain
rules? [I]t is applicability alone which elevates arithmetic from a game to
the rank of a science.

The formalist could retort that applications are not part of math-
ematics itself, but are extraneous to it. Frege (1903: §88) quotes
Thomae (1898: §§1-11):

The formal conception of numbers accepts more modest limitations than
does the logical conception. It does not ask what numbers are and what
they do, but rather what is demanded of them in arithmetic. For the
formalist, arithmetic is a game with signs which are called empty. That
means that they have no other content (in the calculating game) than they
are assigned by their behaviour with respect to certain rules of combination
(rules of the game). The chess player makes similar use of his pieces; he
assigns them certain properties determining their behavior in the game .

To be sure, there is an important difference between arithmetic and chess.
The rules of chess are arbitrary, the system of rules for arithmetic is such
that by means of simple axioms the numbers can be referred to manifolds

and can thus make important contributions to our knowledge of nature.
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Thomae here seems to adopt the view I call ‘moderate game for-
malism’. The idea is that the mathematician treats his ‘language’ as

P ) A
if it is a bunch of meaningless characters. The rules for arithmetic

were perhaps chosen for the purpose of some applications, but
these applications are of no concern to the mathematician as such.
As Frege puts it on behalf of this game formalist, ‘in formal arith-
metic we absolve ourselves from accounting for one choice of the
rules rather than another’ (Frege 1903: §89).
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away just because the formalist, or even the mathematician, refuses
to deal with it. He sarcastically asks what is gained by the dodge:
“To be sure, arithmetic is relieved of some work, but does this
dispose of the problem? The [formalist] shifts it to the shoulders of
his colleagues the geometers, the physicists and the astronomers;
but Luey decline the OCCUPdLlOi‘l with Luduns, and so it falls into a
void between the sciences. A clear cut separation of the domains of
the sciences may be a good thing, provided that no domain remains
for which no one is responsible’ (Frege 1903: §92). Frege then points
out that the applications in question are extremely wide. Math-
ematics applies to anything that can be counted or measured. The
same number ‘may arise with lengths, time intervals, masses,
moments of inertia, etc.” Thus, the problem of ‘the usefulness of
arithmetic is to be solved—in part, at least—independently of those
sciences to which it is to be applied’. And so it will not do to avoid
the problem in this way.’ Even if Frege’s dismissal of formalism is
premature, it is clear that the formalist does owe us an account of
the applicability of mathematics.

2. Deductivism: Hilbert’s Grundlagen der Geometrie

ame formalism suooests a variation
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’ The wide applicability of numbers is one of Frege’s considerations in favour
of logicism. His own account of the natural numbers explicitly begins with one of
their applications: to mark cardinality (see Chapter 5, §1). Frege’s (1903) account of
the real numbers turns on their application in measuring ratios of quantities (see
Simons 1987 and Dummett 1991: ch. 22).
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mathematician, the physicist, the astronomer—manages to inter-
pret the basic axioms of, say, arithmetic so that they come out true.
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itself this interpretation would not guarantee that the theorems are
true under the same interpretation. How do we know that the rules
of the arithmetic-game take us from truths (so interpreted) to
truths? Frege (1903: §91) wrote:

senses expressing thoughts, in formal arithmetic they are comparable with
the positions of chess pieces, transformed in accordance with the rules
without consideration for any sense. For if they were viewed as having
sense, the rules could not be arbitrarily stipulated; they would have to be
chosen so that from formulas expressing true propositions [one] could
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[derive] only formulas likewise expressing true propositions. Then the
standpoint of formal arithmetic would have been abandoned, which
insists that the rules for the manipulation of signs are quite arbitrarily
stipulated.

In contemporary terms, for the application of a branch like arith-
metic to succeed, the rules of the game cannot be arbitrary, but
must constitute logical consequences. No matter how the language is
interpreted, if the axioms come out true, then the theorems should
be true under the same interpretation.

The advent of rigorous deductive systems—thanks in large part
to Frege—suggests a tempting philosophy that has something in
common with game formalism, but avoids this particular pitfall. A
deductivist accepts Frege’s point that rules of inference must pre-
serve truth, but she insists that the axioms of various mathemat-
ical theories be treated as if they were arbitrarily stipulated. The
idea is that the practice of mathematics consists of determining
logical consequences of otherwise uninterpreted axioms. The
mathematician is free to regard the axioms (and the theorems) of
mathematics as meaningless, or to give them an interpretation at
will.

To articulate this view rigorously, one would distinguish the
1og1ca1 terms like ‘and’, “if . . . then’, ‘there exists’, and for all’ from
the non-logical, or speaﬁcally mathematical, terminology such as
‘number’, ‘point’, ‘set’, and ‘line’. The logical terminology is under-
stood with its normal meaning, while the non-logical terminology

(4
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is left uninterpreted, or is treated as if it were uninterpreted.* Let ®
be a theorem of, say, arithmetic. According to deductmsm the
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Deductivism is sometimes called ‘if-then-ism’.

The affinity between game formalism and deductivism results
from the development of logical systems that can be ‘operated like
a calculus’, as Frege put it. Deductivism is consonant with the
slogan that logic is topic-neutral. From the modern, model-
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a conclusion @ is valid, then @ is true under any interpretation that
makes all of the premisses I true. The idea behind deductivism is
to ignore the interpretation and stick to the inferences.

Like the game formalist, our deductivist proposes clean answers
to philosophical questions. What is mathematics about? Nothing,
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knowledge? It is knowledge of what follows from what. Mathemat-
ical knowledge is logical knowledge.” How is a branch of mathemat-
ics applied? By finding interpretations that make its axioms true.
Deductivism is a philosophy that goes well with developments in
the foundations of mathematics, especially geometry, during the
nineteenth and early twentieth centuries. The crucial events
included the advent and success of analytic geometry, with project-
ive geometry as a response; the attempt to accommodate ideal and
imaginary elements, such as points at infinity; the development of
n-dimensional geometry; and the assimilation of non-Euclidean
geometry into mainstream mathematics alongside, not replacing,
Euclidean geometry. These themes helped to undermine the Kan-
tian thesis that mathematics is tied to intuitions of space and time
(see ch. 4, §2). The mathematical community took on a growing
interest in I"IQ‘OL'U' in th(" axiomatizations Of various brancheﬂ Of
mathemaucs, and ultimately in the understanding of deduction as
independent of content. It is perhaps a small and natural step from
these mathematical and logical developments to the philosophical
thesis that the ‘interpretation’ of the axioms does not matter. The
physicist can worry about whether real space-time is Euclidean or
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* This approach is foreign to Frege’s logicism. For Frege, every term of math-
ematics is logical, and so would be fully interpreted. See van Heijenoort 1967a and
Goldfarb 1979.

> Deductivism has this much in common with logicism (see ch. 5).
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4-dimensional, but the mathematician is free to explore the con-
sequences of all kinds of geometries.

NMaritz Dacch devaelaned the idea that laoical inferane
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topic-neutral. Pasch wrote that geometry should be presented in a

formal manner, without relying on intuition or observation when
making inferences:

If geometry is to be truly deductive, the process of inference must be
independent in all its parts from the meaning of the geometrical concepts,
just as it must be independent of the diagrams; only the relations specified
in the propositions and definitions may legitimately be taken into account.
During the deduction it is useful and legitimate but in no way necessary,
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the inadequacy of the proof is made mfest. (Pasch 1926: 91)

: wrote that Pasch’s work set the standard
for geometry: ‘No work thereafter held the attention of students of
the subject which did not begin with a careful enumeration of the
undefined or primitive terms and unproved or primitive statements:
and which did not satisfy the condition that all further terms be
defined, and all further statements proved, solely by means of this
primitive base.’

David Hilbert’s work in geometry around the turn of the twen-
tieth century represents the culmination of these foundational
developments. The programme executed in his Grundlagen der
Geometrie (1899) marked an end to an essential role for intuition in
geometry. Although spatial intuition or observation remains the
source of the axioms of Euclidean geometry, in Hilbert’s writing
the role of intuition and observation is explicitly limited to motiv-
ation and is heuristic. Once the axioms have been formulated,
intuition and observation are banished. They are not part of
mathematics.

One result of this orientation is that anything at all can play the
role of the undefined primitives of points, lines, planes, and so on,
so long as the axioms are satisfied. Otto Blumenthal reports that, in
a discussion in a Berlin train station in 1891, Hilbert said that in a
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instead of “points, straight lines, and planes”, “tables, chairs, and
beer mugs”’ (see Hilbert 1935: 388-429; the story is related on
p. 403).

Hilbert (1899) sums up the idea as follows: “We think of ..
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points, straight lines, and planes as having certain mutual relations,
which we indicate by means of such words as “are situated”,
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plete and exact description of these relations follows as a con-
sequence of the axioms of geometry.” To be sure, Hilbert also says
that the axioms express ‘certain related fundamental facts of our
intuition’, but in the subsequent development of the book all that
remains of the intuitive content is the use of words like ‘point’,
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theorems). Hilbert’s protégée Paul Bernay
aims of Hilbert (1899):
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A main feature of Hilbert’s axiomatization of geometry is that the axio-
matic method is presented and practised in the spirit of the abstract con-
ception of mathematics that arose at the end of the nineteenth century
and which has generally been adopted in modern mathematics. It consists
in abstracting from the intuitive meaning of the terms . . . and in under-
standing the assertions (theorems) of the axiomatized theory in a hypo-
thetical sense, that is, as holding true for any interpretation . . . for which
the axioms are satisfied. Thus, an axiom system is regarded not as a system
of statements about a subject matter but as a system of conditions for
what might be called a relational structure ... [On] this conception of
axiomatics . . . logical reasoning on the basis of the axioms is used not
merely as a means of assisting intuition in the study of spatial figures;
rather logical dependencies are considered for their own sake, and it is
insisted that in reasoning we should rely only on those properties of a
figure that either are explicitly assumed or follow logically from the
assumptions and axioms.

The second of Hilbert’s famous ‘Mathematical Problems’
Hilbert 1900 \ PYan(‘]Q the deductivist grmr(mrh to every corner of

tions of a science, we must set up a system of axioms which con-
tains an exact and complete description of the relations subsisting

° In a lecture before the 1900 International Congress of Mathematicians in
Paris, Hilbert presented twenty-three problems for mathematicians to tackle. The
list provided much of the agenda for mathematics, and mathematical logic in
particular, through much of the twentieth century. One of the most famous
problems, the tenth, was to find an algorithm for determining whether a given
diophantine equation has a solution over the natural numbers. This issue was only
resolved when Matijacevi¢ (1970) showed that there is no such algorithm.
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between the elementary ideas of that science. The axioms set up
are at the same time the definitions of those elementary ideas .
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was that the formal languages and deductive systems were formu-
lated with sufficient clarity and rigour for them to be studied as
mathematical objects in their own right. That is, the mathematician
can prove things about formal systems. Such efforts became known
as meta-mathematics Interest in meta-mathematical questions grew
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[rom tne aeve opit ts in non-Euclidean geometry, as a TCSPpOoi1se
to the fallure to prove the parallel postulate. In effect (and with
hindsight), the axioms of non-Euclidean geometry were shown to
be consistent by describing a structure that makes them true.

Using techniques from analytic geometry, Hilbert (1899) con-
structed a model of all of the axioms using real numbers, thus
showing that the axioms are ‘compatible’, or consistent. In con-
temporary terms, he showed that the axioms are satisfiable. If spa-
tial intuition were playing a role beyond heuristics, this proof
would not be necessary. Intuition alone would assure us that all of
the axioms are true (of real space), and thus that they are all com-
patible with each another. Geometers in Kant’s day would wonder
about the point of proving ‘compatibility’ or satisfiability in this
context. As we shall see in a moment, Frege also balked at it.

Hilbert then gave a series of models in which one of his axioms
is false, but all the other axioms hold, thus showing that each axiom
is independent of the others. The various domains of ‘points’,
‘lines’, and so on of each model are sets of numbers, sets of pairs of
numbers, or sets of sets of numbers. Not quite tables, chairs, and
beer mugs, but in the same spirit.

Presumably, this meta-mathematics is not itself the derivation of
theorems from axioms regarded as meaningless. The goal of meta-
mathematics is to shed light on a subject-matter, namely formal
languages and axiomatizations. Thus, meta-mathematics seems to
be an exception to the theme of deductivism (and game formal-
ism), which holds that mathematics need have no subject-matter.

One option would be for the deductivist to hold that meta-
mathematics is not mathematics, but this is close to an oxymoron.

Meta-mathematics has the same appearances and methods as
any other branch of mathematics. To be sure, meta-mathematics
can be (and subsequently was) formalized. To be consistent,
our deductivist should propose that the ‘mathematics’ in
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meta-mathematics is just the derivation of consequences from the
axioms of this meta-mathematics, with these axioms regarded as

meaninolece The ‘annlicati
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languages and deductive systems is irrelevant to its essence as a
branch of mathematics. Just as arithmetic can be applied to
counting, meta-mathematics can be applied to deductive systems.
The role and importance of meta-mathematics varies among the
formalist authors.
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d on a spirite
highlights the differences in their philosophical approaches to
mathematics.” Frege asked about Hilbert’s (1899) claim that his
axiomatization provides definitions of the primitives of geometry, so
that the very same sentences serve as axioms and definition. Frege

tried to correct Hilbert on the nature of definitions and axioms.
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fix the denotations of terms, axioms should express truths. In a
letter dated 27 December 1899 Frege argued that Hilbert (1899
does not provide a definition of, say, ‘between’, since the axiomati-
zation ‘does not give a characteristic mark’ that can be used to
determine whether the relation ‘between’ holds:

CL.

the meanings of the words ‘point’, ‘line’, ‘between’ are not given, but are
assumed to be known in advance . . . [I]t is also left unclear what you call a
point. One first thinks of points in the sense of Euclidean geometry, a
thought reinforced by the proposition that the axioms express funda-
mental facts of our intuition. But afterwards you think of a pair of num-

bers as a point ... Here the axioms are made to carry a burden that
belongs to definitions . . fmesid the old meaning of the word “axiom’
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some of Hilbert’'s meta-mathematical theorems. For example,
Hilbert showed that his axiomatization is consistent by construct-
ing a Cartesian model in which ‘points’ are pairs of numbers. In the
same letter, Frege told Hilbert that a definition should specify the
meaning of a single word whose meaning has not yet been given,

and the definition should employ other words whose meanings are
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” The correspondence is published in Frege 1976 and translated in Frege 1980.
See Resnik 1980, Coffa 1991: ch. 7, Demopoulos 1994, and Hallett 1994 for insight-
ful analyses of it. See also Shapiro 1997: ch. 5.
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already known. In contrast to definitions, axioms and theorems
‘must not contain a word or sign whose sense and meaning . . . was

not already completely laid down, so that there is no doubt about

the sense of the proposition and the thought it expresses. The only
question can be whether this thought is true . . . Thus axioms and
theorems can never try to lay down the meamng of a sign or word
that occurs in them, but it must already be laid down.” Frege’s point
is a simple dilemma: if the terms in the proposed axioms do not
have meaning beforehand, then the statements cannot
false), and thus they cannot be axioms. If they do have meaning
beforehand, then the axioms cannot be definitions.

In contemporary terms, Hilbert provided implicit, or functional
definitions of terms like ‘point’, ‘line’, and ‘plane’. These are simul-
taneous characterizations of several items, in terms of their rela-
tions to each other. A successful it ‘1phC1t definition Captures a struc-
ture (see Shapiro 1997: chs. 4, 5). Frege did not accept this notion, at
least not as a definition.

Frege added that from the truth of axioms, ‘it follows that they
do not contradict one another’ and so there is no further need to
show that the axioms are consistent. That is, Frege did not see the
point of Hilbert’s meta-mathematics. The truth of the axioms is
guaranteed by intuition, and there is no reason to show that they
are consistent.

In reply, on 29 December, Hilbert told Frege that the purpose of
the Grundlagen (1899) is to explore logical relations among the
principles of geometry, to see why the ‘parallel axiom is not a
consequence of the other axioms” and how the fact that the sum
of the angles of a triangle is two right angles is connected with
the parallel axiom. 1 presume that Frege, the pioneer in math-
ematical logic, could appreciate this project. Concerning Frege’s
assertion that the meanings of the words “point’, ‘line’, and plane
are ‘not given, but are assumed to be known in advance’, Hilbert
replied:

This is apparently where the cardinal point of the misunderstanding lies. I
do not want to assume anything as known in advance. I regard my explan-
ation . . . as the definition of the concepts point, line, plane . . . If one is
looking for other definitions of a ‘point’, e.g. through paraphrase in terms
of extensionless, etc., then I must indeed oppose such attempts in the
most decisive way; one is looking for something one can never find
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because there is nothing there; and everything gets lost and becomes
vague and tangled and degenerates into a game of hide and seek.

This is an allusion to ‘definitions’ like Euclid’s “a point is that which
has no parts’. Hilbert claimed that such definitions do not help.
These ‘definitions’ do not get used in the mathematical develop-
ment. All we can do is specify the relations of points, lines, and
planes to each other—via the axiomatization. All we can provide is
an implicit definition of the terminology. To try to do better is to
lapse into ‘hide and seek’. Hilbert also responded to Frege’'s com-
plaint that Hilbert’s notion of ‘point’ is not ‘unequivocally fixed":
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it is surely obvious that every theory is only a scaffoldin
concepts together with thelr necessary relations to one another, and that
the basic elements can be thought of in any way one likes. If in speaking
of my points, I think of some system of things, e.g., the system love, law,
chimney-sweep . . . and then assume all my axioms as relations between
these things, then my propositions, e.g., Pythagoras’ theorem, are also
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of, e.g. in the prmaple of duality . . . [This] . . . can never be a defect in a
theory, and it is in any case unavoidable.

Note the similarity with Hilbert’s quip in the Berlin train station.

Hilbert vehemently rejected Frege’s claim that there is no need
to worry about the consistency of the axioms, because they are all
true: ‘As long as I have been thinking, writing and lecturing on
these things, I have been saying the exact reverse: if the arbitrarily
given axioms do not contradict each other with all their con-
sequences, then they are true and the things defined by them exist.
This is for me the criterion of truth and existence.” Literally, Hilbert
claimed that if a collection of axioms is consistent, then they are
true and the things the axioms speak of exist. This makes for a
sharp contrast to the way we think in other areas. A more cautious
statement for Hilbert would be that the consistency of a collection
of axioms is sufficient for them to constitute a legitimate branch of
mathematics. Consistency is all the ‘truth’ and ‘existence’ that the
mathematician needs.

In his response, dated 6 January 1900, Frege noted that Hilbert
wanted ‘to detach geometry from spatial intuition and to turn it
into a purely logical science like arithmetic’, and Frege was able to
recapture much of Hilbert’s perspective, in his own framework.
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However, the two great minds remained far apart. Frege said that
the only way to establish consistency is to give a model: ‘to point to

an object that has all those properties, to give a case where all those

requirements are satisfied.” As we will see in the next section, the
later Hilbert programme attempted to provide another way to
establish consistency.

Frege complained that Hilbert’s ‘system of definitions is like a
system of equations with several unknowns’ I think that Hilbert
would accept this analogy In the example at hand, three
‘unknowns’ are ‘point’, ‘line’, and ‘plane’. We only get the relations
among those. Frege wrote: ‘Given your definitions, I do not know
how to decide the question whether my pocket watch is a point.’
Hilbert would surely agree, but he would add that the attempt to
resolve this issue of the pocket watch is to play the game of hide
and seek. Frege’s issue here is reminiscent of the so-called ‘Caesar
problem’ raised in his own logicism (see ch. 5, §1). For Frege, the
sentence ‘my pocket watch is a point’ must have a truth value, and
our theory must determine this truth value, just as the theory of
arithmetic must determine a truth value to the equation 2 = Julius
Caesar’.

Hilbert took the rejection of Frege’s perspective on concepts—
indicated by the pocket watch issue—to be a major innovation, and
strength to his approach. In a letter to Frege dated 7 November
1903 he wrote that ‘the most important gap in the traditional struc-
ture of logic is the assumption . . . that a concept is already there if
one can state of any object whether or not it falls under it ...
[Instead, what] is decisive is that the axioms that define the concept
are free from contradiction.” Showing some exasperation, Hilbert
summed it up:

a concept can be fixed logically only by its relations to other concepts.
These relations, formulated in certain statements I call axioms, thus arriv-
ing at the view that axioms . . . are the definitions of the concepts. I did
not think up this view bera se I had nothing better to do, but I found
myself forced into it by the requirements of strictness in logical inference
and in the logical construction of a theory. I have become convinced that
the more subtle parts of mathematics . .. can be treated with certainty

only in this way; otherwise one is only going around in a circle.
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3. Finitism: The Hilbert Programme

To paraphrase Dickens, mathematics at the turn of the twentieth
century was ‘the best of times, the worst of times’. Powerful and
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fruitful developments in real analysis, due to mathematicians like
Augustin Louis Cauchy, Bernard Bolzano, and Karl Weierstrass,
overcame the problems with infinitesimals and put the calculus on
a solid foundation. Hilbert (1925: 187) wrote that real and complex
analysis is ‘the most aesthetic and delicately erected structure of
mathematics’. Although infinitely small and infinitely large quan-
tities were not needed, the new theories still relied on infinite col-
lections. According to Hilbert, ‘mathematical analysis is a sym-
phony of the infinite’. At the same time, there was an exhilarating
account of the infinite in Georg Cantor’s set theory.

Despite these breathtaking developments, or because of them,
there was a feeling of foundational crisis. Mathematics seems to
be, and should be, the most exact and certain of all disciplines, and
yet challenges and doubts were arising. In light of antinomies like
Russell’s paradox (see ch. 5, §§1-2), there was no certainty that the
set theory was even consistent. The sense of crisis was not helped
by Cantor’s use of what he called ‘inconsistent multitudes’, collec-
tions of sets that are too big to be collected together into one set.
The antinomies led to attacks on the legitimacy of some math-
ematical methods, leading some mathematicians to impose severe
restrictions on mathematical methods, restrictions that would
cripple real and complex analysis (see ch. 1, §2, ch. 5, §2, and
ch. 7).

Hilbert’s response to these developments incorporated aspects
of deductivism, term formalism, and game formalism. Whatever
its philosophical merits, the Hilbert programme led to a fruitful era of
meta-mathematics that thrives today. For Hilbert. the programme

had an explicit epistemic purpose: “The goal of my theory is to

establish once and for all the certitude of mathematical methods’
(Hilbert 1925: 184). It would build on the early work in axiomatiz-
ing branches of mathematics, as well as the monumental efforts of
logicists like Frege in developing rigorous logical systems:

There is ... a completely satisfactory way of avoiding the paradoxes
without betraying our science. The desires and attitudes which help us
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find this way . . . are these: (1) ... [W]e will carefully investigate fruitful
definitions and deductive methods. We will nurse them, strengthen them,

and make them useful Nn one hall d rive us out of the parar‘hcp \xfh ‘_h
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Cantor has created for us. (2)We must establish throughout mathematics
the same certitude for our deductions as exists in ordinary elementary
number theory, which no one doubts and where contradictions and para-
doxes arise only through our own carelessness. (Hilbert 1925: 191)

The idea behind the programme is to carefully and rigorously
formalize each branch of mathematics, together with its logic, and
then to study the formal systems to make sure they are coherent.

To describe the programme, we begin with its core, which is
sometimes called ° uuudl“y' arithmetic’. Most culpudLlLduy, uuitar'y'
arithmetic is not understood as a meaningless game (like chess), or
as the deduction of consequences from meaningless axioms. On
the contrary, the assertions of finitary arithmetic are meaningful,
and they have a subject-matter.

The formulas of finitary arithmetic include equations like
'2+3 =5 and 12,553 + 2,477 = 15,030’, as well as simple combin-
ations of these, like ‘7+5=12 or 7+ 7 # 10°, or even 2'%%° + 1 is
prime’. Notice that, so far, the only statements to be considered
are those that refer to specific natural numbers, and that all of the
properties and relations mentioned are effectively decidable in the
sense that there is an algorithm (or computer program) that com-
putes whether the properties and relations hold.

Consider the following two sentences:

(1) there is a number p greater than 100 and less than 101! + 2
such that p is prime.®

(2) there is a number p greater than 100 such that both p and
p + 2 are prime.

Both of these contain a quantifier, ‘there is a number p’, but there is
a difference between them. The quantifier in sentence (1) is ‘limit-
ed’ to the (finitely many) natural numbers less than 100! + 2. Call
this a bounded quantifier. In contrast, the quantifier in sentence (2)
has no limits, and so it ‘ranges’ over all natural numbers, an infinite
collection. This is called an unbounded quantifier. Hilbert regards
sentences with only bounded quantifiers to be finitary, while sen-
tences, like (2), with unbounded quantifiers are not finitary.

® The number 101! is the result of multiplying 1, 2, 3, . . ., 101. It is very large.
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Like the combinations of simple equations, sentences with only
bounded quantifiers are effectively decidable, in the sense that there
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bounds can be very large, there is some idealization involved, but
with bounded quantifiers there are only finitely many cases to be
considered, and so such propositions represent computations. Sen-
tences with unbounded quantifiers do not have this property. There
is no limit to the number of cases to be considered, even in
principle.

Hilbert introduces letters to represent generality. Consider the
sentence:

The instances of (3), like ‘0+100=100+0" and
‘47 + 100 = 100 + 47, ar ] i finit:

sentence (3) says that each such 1nstance is true. Hilbert regards
such generalizations to be finitary. The commutative law thus has a

finitary formulation:
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4 a+b=b+a

The negation of an equation, like 3 + 5 # 8’, is a legitimate fini-
tary statement. It expresses the falsehood that the sum of 3 and 5 is
not 8. However, it is not clear what to make of the negations of
statements, like (3) and (4), that contain letters for generality.
Hilbert (1925: 194) said that sentences with generality letters do not
have finitary negations. He wrote: ‘the statement that if a is a
numerical symbol, then a + 1 = 1 + ais universally true, is from our
finitary perspective incapable of negation. We will see this better if
we consider that this statement cannot be interpreted as a conjunc-
tion of infinitely many numerical equations by means of “and” but
only as a hypothetical judgment which asserts something for the
case when a numerical symbol is given.” Thus, the negation of a
statement of generality would assert that there is an instance—a
numerical symbol—for which it is false. Similarly, the negation of
(3) would say that there is a number p such that p + 100 is not
identical to 100 + p. Thus, the negation of a statement of generality
contains an unbounded quantlﬁer, and so is not finitary.

There is no serious epistemological issue concerning those fini-
tary sentences that lack letters for generality. All such sentences
represent routine (if long) computations, and so determining their
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truth value is only a matter of executing an algorithm (but see note
2 above) Hilbert is not explicit about how we legitimately come to

ccert finitary centencece that An have lettere for cenerality and there
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is dlsagreement among scholars as to the proof techniques in fini-
tary arithmetic. The most common interpretation is that finitary
arithmetic corresponds to what is today called ‘primitive recursive
arithmetic’, but some take the extent of finitary methods to be
more open-ended.’
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is it about? Apparently, the subject-matter of finitary arithmetic is
the natural numbers. So, once again, we ask what those are. Hilbert
explicitly rejected the logicist perspective: ‘we find ourselves in
agreement with the philosophers, notably with Kant. Kant taught

that mathematics treats a subject matter which is given
independently of logic. Mathematics, therefore, can never be
grounded solely on logic. Consequently, Frege’s and Dedekind’s
attempts to do so were doomed to failure’ (Hilbert 1925: 192).
Hilbert holds that finitary arithmetic concerns what is, in a sense, a
precondition to all (human) thought—even logical deduction. Using

Kantian language, Hilbert wrote that to think coherently at all,
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something must be given in conception, viz., certain extralogical concrete
objects which are intuited as directly experienced prior to all thinking. For
logical deduction to be certain, we must be able to see every aspect of
these objects, and their properties, differences, sequences, and contiguities
must be given, together with the objects themselves, as something which
cannot be reduced to something else ... This is the basic philosophy
which I find necessary, not just for h matics, but for all scientific

thinking, understanding, and communicating. (Hilbert 1925: 192)

posed that the subject-matter of finitary arithmetic is
the concrete symbols themselves, whose structure is immediately
clear and recognizable’. He proposed that in finitary arithmetic, we

identify the natural numbers with the ‘numerical symbols’:
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He emphasized that, so understood, ‘each numerical symbol is

° See any treatment of proof theory for an account of primitive recursive
arithmetic (e.g. Smorynski 1977: 840 or, for a fuller treatment, Takeuti 1987). See
also Detlefsen 1986 and Tait 1981.
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intuitively recognizable by the fact that it contains only |’s’. The
symbol 2’ is then introduced as an abbreviation of °| |, etc. So the
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ie., , is longer than the symbol 2, i.e., | |; or, in other words, that
the latter symbol is a proper part of the former’.

Hilbert thus shows an affinity with what I call ‘term formalism’
(see §1.1 above). As with game formalism, the use of the word
‘symbol’ is misleading here. Hilbert is concerned with the char—

nrtaerg <

acters themsel
themselves.

Despite the use of the word ‘concrete’, Hilbert intends the
characters studied in finitary arithmetic to be understood more as
abstract types than as physical tokens.’ The physical hunk of ink
(or burnt toner) | | is not a proper part of the physical hunk || |.
lllC two LUke 1S OCcur at uluéfent locatlo 18 III bdeC dﬂu SO are¢
distinct hunks. Notice also that Hilbert said that the ‘concrete
symbols’ are ‘given in conception’ and ‘intuited as directly experi-
enced prior to all thinking’. Hilbert does not say that the concrete
symbols are perceived. This is another indication that the ‘con-
crete symbols’ are not physical objects. He seems to have had
something like Kant’s form of intuition in mind (see Chapter 4,
92).

Hilbert also held that the subject of finitary arithmetic is essen-
tial to all human thought. Here as well we have seen similar ideas in
Kant. The idea is that in order to think and reason at all, we have to
use symbols and manipulate them in some fashion or other. Fini-
tary arithmetic may not be absolutely incorrigible, or immune
from doubt, but it is as certain as is humanly possible. There is no
more preferred, or more epistemically secure, standpoint than fini-
tary arithmetic (see Tait 1981).

To be sure, ﬁmtary anthmetic is only a small (and potentially
trivial) chunk of the wonderful tapestry of mathematics. The first
foray beyond finitary arithmetic consists of statements about nat-
ural numbers (or character types) that contain unbounded quanti-

fiers. As above, this includes the negations of finitary statements

that contain letters for
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there is real analysis, com-

'* See §1.1 above. In philosophical jargon, ‘concrete’ usually means ‘physical’ or
‘spatio-temporal’. Mathematicians sometimes use the word ‘concrete’ for some-
thing more like ‘specific’, as opposed to ‘general’. In this sense, number theory is
more ‘concrete’ than the branches of abstract algebra like group theory.
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plex analysis, functional analysis, geometry, set theory, and so on.
Hilbert dubbed all of this ‘ideal mathematics’, to make the analogy
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and unify much geometry, so ideal mathematics allows us to
streamline and deal more efficiently with finitary arithmetic. There-
fore ideal mathematics is treated instrumentally:
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We ... conclude that [the symbols and formulas of ideal mathematics]
h

anything. St111 we can derive from [the ideal formulas] other formulas to
which we do ascribe meaning, viz., by interpreting them as communica-
tions of finitary statements. Generalizing this conclusion, we conceive
mathematics to be a stock of two kinds of formulas: first, those to which
the meanmgful communications of finitary statements correspond; and
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This ideal mathematics is to be treated formally, pretty much
along the lines of game formalism (see §1.2 above). The syntax and
rules of inference for each branch of ideal mathematics are to be
formulated explicitly, and the branch is to be pursued as if it were
just a game with characters. As Hilbert (1925: 197) put it, ‘material
deduction is thus replaced by a formal procedure governed by
rules’. The ‘rules’ are those of the deductive systems developed by
logicians like Frege.

Of course, ideal mathematics must be useful for finitary arith-
metic. The only strict requirement on a formalized branch of ideal
mathematics is that one cannot use it to derive a formula that
corresponds to a false finitary statement. Suppose that T is a pro-
posed formalization of some ideal mathematics and let @ be any
finitary statement, such as a simple equation. Then we should not
be able to derive (a formula corresponding to) @ in T unless @ can
be determined as true within finitary mathematics. In contempor-
ary terms, the formal system T should be a conservative extension of
finitary arithmetic.

Let us say that the formalized t heg T is consistent if it is not

possible to derive a contradictory formula like °0=0 and 0# 0,
using the axioms and rules of T. If every true finitary statement
corresponds to a theorem of T and if T uses a standard deduc-

tive system (such as Frege’s), then the conservativeness of T is
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equivalent to its consistency.'’ So the requirement on ideal mathe-
matics is consistency.

The emnhacic An conc
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earlier deductivist writing (see the previous section). Recall that he
wrote to Frege that ‘if the arbitrarily given axioms do not contra-
dict each other with all their consequences, then they are true and
the things defined by them exist. This is for me the criterion of
truth and existence.” Here, of course, the notion of ‘consistency’ is
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explicit.

Whether or not one follows Hilbert (or the term formalist) in
identifying the natural numbers with their names, there is clearly a
close structural connection between numbers and symbols. This
connection has been exploited by logicians and other mathemat-
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for the Hilbert programme, the identification of natural numbers
with character types allows finitary arithmetic to be applied to
meta-mathematics. That is, formal systems themselves now come
under the purview of finitary arithmetic. As Hilbert put it, ‘a formal-
ized proof, like a numerical symbol, is a concrete and visible object.
We can describe it completely.” And using finitary arithmetic, we
can prove things about such formalized proofs.

Notice also that if T is a formalized axiomatic system, then the
statement that T is consistent is itself finitary, formulable using a
letter for generality. The statement that T is consistent has the
form:

7y
CJ
'O

a is not a derivation in T whose last line

The final stage of the Hilbert programme is to provide finitary
consistency proofs of the fully formalized mathematical theories.
That is, in order to use a theory of ideal mathematics we have to
formalize it and then show, within finitary arithmetic, that the the-
ory is consistent. Once this is accomplished for a theory T, then we
have achieved the epistemic goal. We have maximal confidence that

"' With standard logical rules, if ® is a contradiction and ¥ is any formula, then
‘if @ then W is derivable. So if a formal theory T is inconsistent, then every
formula can be derived in T. A fortiori, false finitary statements can be derived in T
Conversely, let @ be a true finitary statement, such as an equation, and suppose
that the negation of @ is a theorem of T. By hypothesis, both ® and its negation
are theorems of T, and so T is inconsistent.
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using T will not bring us to contradiction, nor will it produce any
false finitary statements. This is all that we can ask of an ideal

cal hpnrv TF T 1 1S a formalizatinn of Cantorian cet the-
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ory, then once we have a finitary consistency proof, we know with
maximal certainty that we will not be driven from the paradise.
John von Neumann (1931) provided a succinct summary of the

Hilbert programme, as involving four stages:
(1) To enumerate all the symbols used in mathematics and logic . . .

(2) To characterize unambiguously all the combinations of these
symbols which represent statements classified as ‘meaningful’ in clas-
sical mathematics. These combinations are called ‘formulas’ . . .

(3) To supply a construction procedure which enables us to construct
successively all the formulas which correspond to the ‘provable’ state-
ments of classical mathematics. This procedure, accordingly, is called
‘proving’.

(4) To show (in a finitary . . . way) that those formulas which corres-
pond to statements of classical mathematics which can be checked by
finitary arithmetical methods can be proved ... by the process

Y p y p
described in (3) if and only if the check of the corresponding statement
y p g
shows it to be true.

Items (1)~(3) call for the formalization of various branches of
mathematics. This much was accomplished, brilliantly, and the
study of the resulting formal systems is now a thriving branch of
mathematical logic. Item (4), the crucial culmination, proved to be
problematic.

4. incompieteness

Kurt Godel (1931, 1934) established a result that dealt a blow—
many say a death blow—to the epistemic goals of the Hilbert pro-
gramme. Let T be a formal deductive system that contains a certain
amount of arithmetic. Assume that the syntax of T is effective in the
sense that there is an algorithm that determines whether a given
sequence of characters is a grammatical formula, and an algorithm
that determines whether a given sequence of formulas is a legitim-
ate deduction in T. Arguably, these conditions are essential for T to
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play a role in the Hilbert programme. Under these assumptions,

Godel showed that there is a sentence G in the language of T such
rthat (1\ i T 1S consistent then G is not a theorem nF'T' and (2) vf:T

that (1) if T is consistent, then G is not a theorem of T, and (2) if
has a property a bit stronger than consistency, called ‘®-
consistency’,'” then the negation of G is not a theorem of T. That
is, if T is ®-consistent, then it does not ‘decide’ G one way or
another. This result, known as Godel’s (first) incompleteness theorem,
is one of the major intellectual achievements of the twentieth
century.

The formula G has the form of a finitary statement (using
letters for generality). Roughly speaking, G is a formalization of a
statement that G is not provable in T. So, if T is consistent, then G is
true but not provable. Godel’s result thus dashes the hope of find-
ing a single formal systern that captures all of classical mathemat-
iCS, or even all of arithmetic. If someone puts forward a candidate
for such a formal system, then we can find a sentence that the
system does not ‘decide’, although we can see that the sentence is
true.

The incompleteness theorem thus raises doubts about any phil-
osophy of mathematics (formalist or otherwise) that requires a
single deductive system for all of arithmetic—a single formal
method for deriving every arithmetic truth.”” However, the dream
of finding a single formal system for all of ideal mathematics was
not an official (or essential) part of the Hilbert programme. The
trouble, if that is what it is, comes elsewhere.

Godel showed that the reasoning behind the incompleteness
theorem can be reproduced within the given formal system T. In
particular, if the formalization of ‘provable in T° meets some
straightforward requirements, then we can derive, in T, a sentence
that expresses the following;

If T is consistent, then G is not derivable in T.

'* An arithmetic theory T is -consistent if there is no formula ®(x) such that
D(0), O(1), P(2), . . ., are all provable as well as a statement that there is a natural
number x such that ®(x) fails. J. Barkley Rosser (1936) proved a result similar to
Godel’s from the weaker assumption that T is consistent.

* Although one might argue that the original Fregean logicism would not be
successful without such a deductive system, contemporary neo-logicists are not
committed to a claim that there is a single deductive system that yields every
arithmetic truth (see ch. 5, §§1, 4).
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But, as noted above, ‘G is not derivable in T” is equivalent to G. So,
we can derive, in T, a sentence to the effect that

If T is consistent then G.

Assume that T is consistent, and that we can derive, in T, the
requisite statement that T is consistent; then it would follow that
we can derive G in T. This contradicts the incompleteness theorem.
So if T is consistent, then one cannot derive in T the requisite
statement that T is consistent. This is known as Godel’s second
incompleteness theorem. Roughly, it asserts that no consistent theory
(that contains a certain amount of arithmetic) can prove its own
consistency.

This result does indicate trouble for the Hilbert programme. Let
PA be a formalization of (ideal) arithmetic, say the classical theory
of th the natural numbers. T J.l.lC I—muert prograrr*ne i‘t“:Qulff:S djLnlLaTv
proof of the consistency of PA. But the second incompleteness the-
orem is that if PA is in fact consistent, then a straightforward state-
ment of the consistency of PA is not derivable in PA itself, let alone
in the finitary portion of PA. The same goes for any other formal
system, so long as it contains a certain amount of arithmetic. The
Hilbert programme requires a finitary proof that the deductive
system is consistent, and yet, it seems, the consistency cannot be
proved in the system itself, let alone in a more secure subsystem.

A much-discussed paper (Godel 1958) opens by paraphrasing

Bernays:

since the consistency of a system cannot be proved using means of proof
weaker than those of the system itself, it is necessary to go beyond the
framework of what is, in Hilbert's sense, finitary mathematlcs if one
wants to prove the consistency of classical mathematics, or even that of
classical number theory ... [IJn the proofs we make use of insights .

that spring not from the combinatorial (spatiotemporal) properties of the

sign combinations . . . but only from their meaning.

Godel pointed out that since we have no ‘precise notion of what it

means to be evident’, we cannot rigorously prove Bernays’s claim,
but Godel added that ‘there can be no doubt that it is correct’.

L vizQau AL i

There is a near, but not universal, consensus on the Bernays-
Godel conclusion. A post-Godel defence of a Hilbert-style pro-
gramme has at least two options. One is to challenge the formaliza-
tion of consistency used in the proof of the second incompleteness
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theorem. There are other ways to express consistency-properties

that escape the second incompleteness theorem (see Feferman
1960 Gentzen 10690 anr] npflp*Fepn 10Qn\ The isciie then fiirns on
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just what counts as expressing consistency, and what a proof of
consistency must show in order to meet the epistemic goals of the
Hilbert programme.

A second option would be to show, or claim, that the method-
ology of finitary arithmetic cannot be captured in PA or in any
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branch of ideal mathematics is to streamline the derivation of fini-
tary statements, the proof-methods of any given formalized theory
do not include every finitary proof-method. The thesis is that fini-
tary arithmetic is inherently informal. See Detlefsen 1986.

5 Cunry

Any contemporary philosophy of mathematics that relies heavily
on the rigorous formalization of mathematical theories thereby
shows some influence of formalism, and probably owes a debt to
the Hilbert programme. Although formalism still has advocates
among mathematicians, after the 1940s (or so) few philosophers
and logicians explicitly avowed it. A notable exception is Haskell
Curry.

Curry’s philosophy begins with an observation that, as a branch
of mathematics develops, it becomes more and more rigorous in its
methodology, the end result being the codification of the branch in
a formal deductive system. Curry takes this process of formaliza-
tion to be the essence of mathematics.

He argues that all other philosophies of mathematics are ‘vague’
and, more importantly, they ‘depend on metaphysical assumptions’.
Mathematics, he claims, should be free from any such assumptions,
and he argues that the focus on formal systems provides this free-
dom. He thus echoes Thomae’s claim that formalism has no
extraneous metaphysical assumptions.

The main thesis of Curry’s formalism is that assertions of a
mature mathematical theory be construed not so much as the
results of moves in a particular formal deductive system (as Hilbert
or a game formalist might say), but rather as assertions about a
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formal system. An assertion at the end of a research paper would
be interpreted as something in the form ‘D is a theorem in formal
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and it has a subject-matter. He wrote that ‘the central concept in
mathematics is that of a formal system’ and ‘mathematics is the
science of formal systems’ (Curry 1954). Curry is thus allied more
with term formalism than with game formalism. An appropriate
slogan is that mathematics is meta-mathematics.
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mathematics to finitary arithmetic: ‘In the study of formal systems,
we do not confine ourselves to the derivation of elementary pro-
positions step by step. Rather, we take the system . . . as datum, and

. study it by any means at our command’ (Curry 1954). Curry
concedes that some 1ntu1t10n is 1nvolved in this meta- mathematlcs
but he claims th: i
irrelevant’.

Stepping back one level, on Curry’s view, meta-mathematics is
itself a branch of mathematics. As such, the meta-mathematics
should be formalized. That is, the non-finitary results in meta-
mathematics (like most of contemporary mathematical logic) are
accommodated by producing a formal system for meta-
mathematics, and construing the results in question as theorems
about that formal system. Presumably, this does not constitute a
vicious infinite regress.

For Curry, there is no real issue concerning the truth of a given
formal system. Instead, there is only a question of ‘considerations
which lead us to be interested in one formal system rather than
another’. This matter of ‘interest’ is largely pragmatic: ‘Accept-
ability is relative to a purpose, and a system acceptable for one
purpose may not be for another.”’* Curry mentions three ‘criteria
of acceptability’ for formal systems: ‘(1) the intuitive evidence of
the premisses; (2) consistency . . .; (3) the usefulness of the theory as
a whole’ (Curry 1954).

Of course the second criterion, consistency, is important. An
inconsistent formal system has limited use (assuming a standard
logic, see note 11 above). Unlike Hilbert, however, Curry does not
require a proof of consistency:

" Curry’s notion of acceptability is quite similar to Carnap’s ‘external ques-

tion’ concerning the acceptability of a ‘linguistic framework’ (e.g., Carnap 1950).
See chapter 5, §3.
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The criterion of consistency has been stressed by Hilbert. Presumably, the

reason for this is that he . . . seeks an a priori justification. But aside from
the fact that for physics the question of an a priori justification is irrelevant,

I maintain that a proof of con51stency is neither a necessary nor a suf-
ficient condition for acceptability. It is obviously not sufficient. As to
necessity, so long as no inconsistency is known, a consistency proof,
although it leads to our knowledge about the system, does not alter its
usefulness. Even if an inconsistency is discovered thls does not mean

. The peculiar position of Hilbert in regard to consistency is thus no
part of the formalist conception of mathematics . . . (Curry 1954)
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oir“lCt‘: there 1S no need to pI'()VC consistenc Y DCI()I'C acccpung a
formal system, Curry’s philosophy is not affected by Godel's sec-
ond incompleteness theorem. Since Curry does not restrict math-
ematics to a single formal system, his views are also unaffected by
Godel’s first incompleteness theorem.

Like most formalists, Curry seems to require that every legitim-
ate branch of mathematics be formalized. What is the formalist (or
deductivist) to make of the practice of, say, arithmetic, before it was
formalized in the nineteenth century? Were Archimedes, Cauchy,
Fermat, and Euler not doing mathematics? On the contemporary
scene, what is the status of informal mathematical practice, which
does not explicitly invoke a rigorous deductive system? Indeed,
what is the status of informal meta-mathematics?

Opponents of Curry-style formalism question the philosophical

significance of the observation that as a branch of mathematics
deve]nnq and becomes ricorous. it gets formalized. With Freoe and
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Godel, some phxlosophers maintain that something essenual is lost
in the formalism. Mathematical language has meaning and it is a
gross distortion to attempt to ignore this meaning. At best, formal-
ism and deductivism focus on a small aspect of mathematics, delib-
erately leaving aside what is essential to the enterprise. In the next

chapter, we turn to a philosophy that insists that mathemati

inherently informal.
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6. Further Reading

Many of the primary sources noted above are available in English
translation. Geach and Black 1980: 162-213 contains a translation
of the sections (§§86-137) of Frege 1893 on formalism (i.e., con-
cerning Thomae and Heine). Benacerraf and Putnam 1983 contains
translations of von Neumann 1931 and Hilbert 1925 (the above
quoted passages from Hilbert 1925 are from that version). Van
Heijenoort 1967 contains another translation of Hilbert 1925, as
well as a translation of Hilbert 1904 and 1927. Other relevant
papers are Hilbert 1918, 1922, and 1923. See also Hilbert and Ber-
nays 1934. Curry 1954 is also reprinted in the Benacerraf and
Putnam 1983 anthology, with a note indicating that this paper rep-
resents his views in 1939. Curry 1958 is a fuller elaboration of his
mature formalism. Resnik 1980: chs. 2,3 is an excellent secondary
source on the various types of formalism (and Frege’s critique of
game formalism). For a sample of the large literature on the
Hilbert programme, see Detlefsen 1986, Feferman 1988, Hallett
1990, Sieg 1988, 1990, Simpson 1988, and Tait 1981. Bernays 1967 is
a lucid and sympathetic reconstruction of Hilbert’s views. Reid
1970 is a book-length intellectual biography of Hilbert.



