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The long belief in the universal validity of the principle of
excluded third in mathematics is considered by intuitionism as
a phenomenon of history of civilization of the same kind as
the old-time belief in the rationality of & or in the rotation of
the firmament on an axis passing through the earth. And
intuitionism tries to explain the long persistence of this
dogma by . . . the practical validity . . . of classical logic for an
extensive group of simple everyday phenomena. [This] fact

apparently made such a strong impression that . . . classical
logic . .. became a deep-rooted habit of thought whwh was

considered not only as useful but as a priori.

I hope I have made clear that intuitionism on the one hand
subtilizes logic, on the other hand denounces logic as a source
of truth. Further that intuitionistic mathematics is inner
architecture, and that research in the foundations of math-
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(Brouwer 1948: 94, 96)

1. Revising Classical Logic

HE practice of mathematics is primarily a mental activity. To be
Tsure, mathematicians use paper, pencils, and computers, but at
least in theory these are dispensable. The mathematician’s main
tool is her mind. Although the philosophies considered in this
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chapter are quite different from (and even incompatible with) each
other, they all place emphasis on this activity of mathematics, pay-
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views is a rejection of certain modes of inference in mathematics
(see also ch. 1, §2). The philosophies considered here demand revi-
sions to the mathematics of their day, and our day.

The main item is the law of excluded middle (LEM), sometimes

called the ‘law of excluded third” and ‘tertium non datur’ (TND).
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middle is the proposition that either @ or it is not the case that @,
sometimes abbreviated as @ or not-®, or in symbols O\/—D. In
semantics, the closely related principle of bivalence is that every
proposition is either true or false, and so there are only two possible
truth-values—hence the name ‘excluded middle’.l Intuitionism is a
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excluded middle.

Common logical systems that include excluded middle are called
classical, and mathematics pursued with classical logic is called clas-
sical mathematics. The weaker logic, without excluded middle, is
called intuitionistic logic, and the corresponding mathematics is
intuitionistic mathematics. See Dummett 1977 for details.

Intuitionistic logic lacks other principles and inferences that rely
on excluded middle. One of these is the law of double negation
elimination, which allows one to infer a proposition @ from the
denial of the denial of ®. Using intuitionistic logic, one can infer
not-not-® from @, but not conversely. Suppose that someone
derives a contradiction from a proposition in the form not-®. Then
both the classical mathematician and the intuitionist will conclude
that not-not-P (via reductio ad absurdum). The classical logician will
also infer (the truth of) @, but this last inference is disallowed in
intuitionistic logic (unless the mathematician already knows that
® is either true or false).

To take another example, suppose that a mathematician proves
that not all natural numbers have a certain property P. In symbols,
the theorem is =VxPx. A classical mathematician would then infer
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' Excluded middle and bivalence are equivalent if one assumes the platitudes
that for any proposition @, @ is true if and only if @, and D is false if and only if O
is not true. These principles are sometimes called “Tarski biconditionals’ or “T-
sentences’.
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that there is a natural number that lacks P (i.e. 3x—Px). The intu-
itionist would not allow this conclusion (in general). Readers famil-

iar with mathematical logic are
from —VxPx to 3x—Px relies on excluded middle or some equiva-
lent principle or inference.

The proposed, or demanded, revisions to logic are tied to phil-
osophy. Intuitionists argue that excluded middle and the related

inferences indicate a belief in the independent existence of math-
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true or false independent of the mathematician. In present terms,
intuitionists argue that excluded middle is a consequence of realism
in ontology and/or realism in truth value (see ch. 2, §§2.1, 2.2).
Some intuitionists reject this realism outright, while others jus:
argue that mathematics should not presuppose any such meta-
PIIYSIC&I LIlelb

The mathematics one gets via intuitionistic restrictions is verv
different from classical mathematics (see, for example, Heyting
1956, Bishop 1967, Dummett 1977). Critics commonly complain
that the intuitionistic restrictions cripple the mathematician. On the
other hand, intuitionistic mathematics allows for many potentially
important distinctions not available in classical mathematics, and is
often more subtle in interesting ways. Here we examine what leads

some philosophers to demand the restriction.

2. The Teacher, Brouwer

Although Hilbert’s finitary arithmetic had a clear and explicit
Kantian influence (see ch. 6, §3), the previous two chapters have
recorded a marked trend away from Immanuel Kant’s phllosophy
of mathematics. Of all the twentieth century authors considered in
this book, L. E. J. Brouwer was the most Kantian. Brouwer (1912:
78) dubs Kant’s philosophy ‘an old form of intuitionism’ (although

Kant was not critical of the practice of mathematics). It is thus no

coincidence that Hilbert’s ﬁntr:\ry arithmetic has an amnn'v with
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intuitionistic mathematics. Brouwer and Hilbert both noted that if
one sticks to the practice of finitary arithmetic, there is not much
difference between the classical and intuitionistic approach. There
are, however, substantial and irreconcilable differences between
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Hilbert and Brouwer. They clearly disagree over what Hilbert calls
ideal mathematics, which, of course, is the bulk of mathematlcs
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prises could hardly be more different.

In a paper comparing intuitionism with formalism, Brouwer
(1912: 77) noted that scientific principles ‘can only be understood to
hold in nature with a certain degree of approximation’, and he
pointed out that the main ‘exceptions to this rule have from ancient
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has ‘so far resisted all improvements in the tools of observation’.
The philosophical problem is to explain the exactitude enjoyed by
mathematics, and its resistance to empirical refinement. Intuition-
ists and formalists differ on the source of the ‘exact validity’ of the
mathematical sciences: “The question where mathematical exact-
ness does exist, is answered ulut“:ft“:ﬁtly' Uy the two sides; the intu-
itionist says: in the human intellect; the formalist says: on paper.’

For Brouwer, as for Kant, most mathematical truths are not
capable of ‘analytic demonstration’. They cannot become known
by mere analysis of concepts, and they are not true in virtue of
meaning. So the bulk of mathematics is synthetic. Yet mathematical
truth is a priori, independent of any particular observations or other
experience we may have. Brouwer held that mathematics is mind-
dependent, concerning a specific aspect of human thought. In the
terminology of chapter 2, §2, Brouwer was an anti-realist in ontol-
ogy and an anti-realist in truth-value. And he was no empiricist.
Like Kant, Brouwer tried to forge a synthesis between realism and
empiricism.

For Kant and for Brouwer, ‘the possibility of disproving” math-
ematical laws experimentally is ‘not only excluded by a firm belief,
but [is] entirely unthinkable’. For Brouwer, mathematics concerns
the ways humans approach the world. To think at all is to think in
mathematical terms.

Brouwer (1912: 77) echoes the major Kantian theme that a
human being is not a passive observer of nature, but rather plays an

active role in organizing experience: ‘that man always and every-
where creates order in nature is due to the fact that he not only

? As we saw in §3 of the previous chapter, Hilbert said something similar about
mathematics, but Hilbert’s statement was limited to the use of symbols in reason-
ing. As we will see, for Brouwer, the symbols are a side-matter, well removed from
the essence of mathematics.
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isolates the causal sequences of phenomena . .. but also supple-
ments them with phenomena caused by his own activity . . .. Math-

ematics concerns this active role.

Brouwer conceded that developments in nineteenth-century
mathematics made the Kantian view of geometry untenable. The
advent of rigour, leading to the idea of logical consequence as
independent of content, and the development of the multiple inter-
pretations of projective geometry, supported the thesis that only the
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no room for ‘pure intuition’ in geometry. According to Brouwer, the
main blow to the Kantian idea that geometry concerns synthetic a
priori forms of perception was the advent and acceptance of non-
Euclidean geometry: ‘this showed that the phenomena usually
described in the language of elementary geometry may be
described with eqaal exactness . . . in the language of non-Euclidean
geometry; hence, it is not only impossible to hold that the space of
our experience has the properties of Euclidean geometry but it has
no significance to ask for the geometry which would be true for the
space of our experience’ (Brouwer 1912: 80). This point was also
made by Henri Poincaré (1903: 104), another mathematician with
intuitionistic leanings (see Shapiro 1997: ch. 5, §3.1).

Thus, Brouwer abandoned Kant’s view of space. In its place, he
made a courageous proposal to found all of mathematics on a
Kantian view of time. Difficult passages like the following occur
throughout Brouwer’s writing:

[Modern intuitionism] considers the falling apart of moments of life into
qualitatively different parts, to be reunited only while remaining separated
by time, as the fundamental phenomena of the human intellect, passing
by abstracting from its emotional content into the fundamental phenom-
enon of mathematical thinking, the intuition of the bare two-oneness.
This intuition of two-oneness, the basal intuition of mathematics, creates
not only the numbers one and two, but also all finite ordinal numbers,
much as one of the elements of the two-oneness may be thought of as

a new two-oneness, which process may be repeated indefinitely. (Brouwer
1912: 80)

This seems to defy sharp interpretation. The underlying idea might
be to base the natural numbers on the forms of temporal per-
ception, just as Kant founded geometry on the forms of spatial
perception. We apprehend the world as a series of distinct
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moments. Each moment gives rise to another one. This is the ‘bare
two-oneness’. And the second moment gives way to a third, and so

NN 1‘\ us vip]r‘inn— the natiiral nmimherc
Ull, Lll o Jl\.«l\dllls LAIIL 1LIALUWL Gl 1LI1IVCL V.

Brouwer states that this ‘basal intuition’ unites the ‘connected
and separate’. Each moment is unique, and yet is connected to
every other moment. The original intuition also unites the ‘con-
tinuous and the discrete’ and ‘gives rise immediately to the intu-
ition of the linear continuum’. The moments of time are distinct,
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of ‘between’ leads to the rational and, ultimately, real numbers.
The idea seems to be that we know a priori that between any two
moments, there is a third. The temporal continuum ‘is not
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exhaustible by the interposition of new units and ... therefore
[cannot] be thought of as a mere collection of units’. So both the
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grounded in temporal intuition. This yields arithmetic and real
analysis.

Brouwer then follows standard Cartesian techniques to found
geometry on the real numbers, by identifying a point with a pair of
numbers. Brouwer claims that this qualifies ordinary plane and
solid geometry, as well as non-Euclidean and n-dimensional geom-
etry, as synthetic a priori.” Even geometry is ultimately based on the
intuition of time.

Recall that for Kant, arithmetic and geometry are not analytic
because they rely on ‘intuition’. As noted in chapter 4, §2, there
is substantial disagreement among scholars concerning exactly
what Kantian intuition is. In the treatment there, I suggested that
a central component of Kant’s a priori mathematical intuition is
construction. In particular, the crucial intuitive (and synthetic)
aspects of a Euclidean demonstration are the ‘setting out’, where
a typical figure satisfying the hypothesis is drawn, and the aux-
iliary constructions, where the reader is instructed to draw add-
itional lines and/or circles on the given figure. Clearly, these con-
structions are not physical operations on paper or a blackboard,
but are idealizations thereof. One cannot literally draw a line
with no thickness. For Kant, Euclid’s ‘construction’ is a mental

’ Recall that Frege held that arithmetic and analysis are analytic, and he main-
tained a Kantian view of geometry as the synthetic a priori forms of space. Thus,
Frege would not accept the Cartesian foundation of geometry on arithmetic and
analysis. He was thus the exact opposite of Brouwer.
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act, the mind’s active process of apprehending the forms of
perception.

ized mental construction. Consider, for example, the proposition
that for every natural number n, there is a prime number m > n
such that m < n! + 2 and m is prime. For Brouwer, this proposition
invokes a procedure that, given any natural number n, produces a
prime number m that is greater than n but less than n! + 2. The
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mathematician has not established this prop()SiL

given such a procedure. Brouwer (1912, 87-8) discusses a version of
the Schroder-Bernstein theorem: if there is a one-to-one cor-
respondence between set A and a set divided into three disjoint
parts A, + B, + C, such that there is a one-to-one correspondence
between A and A,, then there is also a one-to-one correspondence
between A and 111 + D1 This theorem is pi‘O‘v‘&mc in classical math-
ematics, indeed in second-order logic (see Shapiro 1991: 102-3).
However, Brouwer wrote that the intuitionist interprets the prop-

osition as follows:
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if it is possible, first to construct a law determining a one-to-one cor-
respondence between the mathematical entities of type A and those of
type A,, and second to construct a law determining a one-to-one cor-
respondence between the mathematical entities of type A and those of 4,,
B,, and C,, then it is possible to determine from these two laws by means
of a finite number of operations a third law, determining a one-to-one
correspondence between the mathematical entities of type A and those of
types A, and B,.

The classical theorem concerning the existence of the one-to-one
correspondence does not yield the requisite procedure. Brouwer
argued that it is unlikely that the Schroder—Bernstein theorem is
provable, since we do not know a general method of producing the
procedure of the conclusion.

Brouwer’s repudiation of excluded middle flows from his con-
structive conception of mathematics. Consider first the inference

of double negation elimination, the classical rule that allows one to

infer a sentence @ from a2 premiss that it is not the case that it is not
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the case that ®@. Let P be a property of natural numbers and con-
sider a proposition that there is a number n such that P holds of n;
in symbols this is 3nPn. For an intuitionist, this proposition is estab-
lished only when one shows how to construct a number n that has
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the property P. The negation of a proposition @, symbolized —® is
established when one shows that the assumption of (the construc-
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ation ——3nPn is established when one shows that an assumption
—3nPn is contradictory. Clearly, to derive a contradiction from the
assumption that —3nPn is not to construct a number n such that Pn.
Indeed, we can derive the contradiction and have no idea what such
a number n might be. Thus, from Brouwer’s perspective, double
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The corresponding instance of excluded middle is that either
there is or is not a number n such that Pn. To establish this instance,
one would have either to construct a number n and then show Pn
or else derive a contradiction from the assumption that InPn.
Throughout his career, Brouwer tirelessly argued that we have no a
pi‘iori reason to believe this prii‘xCiplc holds in gene 1eral.

Brouwer (1948: 90) concedes that classical (real and complex)
analysis may be ‘appropriate . . . for science’, but he argues that it
has ‘less mathematical truth’ than intuitionistic analysis, since clas-
sical analysis runs against the mind-dependent nature of mathemat-
ical construction. This is a bold divorce between mathematics and
the empirical sciences.

Brouwer traces the belief in excluded middle to an incorrect and
outdated philosophy of mathematics, the view that I call ‘realism in
ontology’. He argues that the ‘various ways’ in which classical
mathematics is justified “all follow the same leading idea, viz., the
presupposition of the existence of a world of mathematical objects,
a world independent of the thinking individual, obeying the laws of
classical logic . . . (Brouwer 1912: 81). Someone who holds that the
natural numbers, say, exist independent of the mathematician is
likely to interpret the foregoing instance of excluded middle as
elther the collectlon of natural numbers contains a number n such
that Pn or it does not’. From that perspective, every instance of
excluded middle is obvious, indeed a logical truth.

Recall that Plato was critical of the geometers for using dynamic
language, speaking of ‘squaring and applying and adding and the

like . . >. He insisted that ‘the real nhmrt of the entire thtprr is . ..
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knowledge . . . of what eternally exists, not of anything that comes
to be this or that at some time and ceases to be’ (Republic, Book 7,
see ch. 1, §2, and ch. 3, §2 above). Clearly, Brouwer would side with
the geometers against Plato. Mathematics concerns mental activity,
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not some ideal realm of independently existing entities. As such,
the language should be dynamic, not static.

3 -
On Brouwer’s view, the practice of mathemati
b

introspection of one’s mind. In philosophy, a slogan of traditional
idealism is: ‘to exist is to be perceived.” A corresponding slogan for
intuitionism would be that in mathematics, ‘to exist is to be con-
structed’. It follows from Brouwer’s view that all mathematical
truths are accessible to the mathematician, at least in principle:
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has found acceptance with regard to mathematics much later than
with regard to practical life and to science. Mathematics rigorously
treated from this point of view, including deducing theorems
exclusively by means of introspective construction, is called intui-
tionistic mathematics’ (Brouwer 1948: 90). Accordmg to Brouwer,
the classical mathematician incorrectly b ' (i
unknowable truths’.

For Brouwer, every legitimate mathematical proposition dir-
ectly invokes human mental abilities. Mathematical assertions are
‘realized, i.e. ... convey truths, if these truths have been experi-
enced’. Thus, as understood by an intuitionist, the principle of
excluded middle amounts to a principle of omniscience: ‘Every
assignment ... of a property to a mathematical entity can be
judged, i.e., proved or reduced to absurdity.” Brouwer’s argument
is that we are not omniscient and so we should not assume
excluded middle.

Recall that a definition of a mathematical entity is impredicative
if it refers to a collection that contains the entity (ch. 1, §2, and
ch. 5, §2). For example, the usual definition of ‘least upper bound’ is
impredicative, since it characterizes a number in terms of a collec-
tion of upper bounds, and the defined number is a member of that
collection. For a realist in ontology, impredicative definitions are
innocuous, since there is no problem in characterizing an object-
ively existing entity in terms of a collection that contains the entity.
For a realist, there is no more problem with ‘least upper bound’
than with the similarly impredicative ‘most stubborn member of
the faculty’. For an intuitionist, however, an impredicative defini-
tion is v1C1ously circular. We cannot construct a mathematical entity
by using a collection that contains the entity.

In similar fashion, Brouwer (1912: 82) objects to consideration of
collections of mathematical entities, as if they were completed
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totalities. He complains that a classical mathematician . . . ‘intro-
duces various concepts entirely meaningless to the intuitionist,
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space”, “the set whose elements are the continuous functions of
a variable”, “the set whose elements are the discontinuous func-
tions of a variable”, and so forth’. For the intuitionist, we are
never finished constructing all of the elements of one of these
collections, and so we cannot speak of ‘the set’ of such
elements.

Brouwer’s conception of the nature of mathematics and its
objects leads to theorems that are (demonstrably) false in classical
mathematics. As classically conceived, a real number can be
thought of as an infinite decimal, a completed infinity. As Brouwer
(1948) put it, the classical mathematician holds that ‘from the
Uegii‘lﬁii‘lg the n™ element is fixed for each n’. 1v101‘€0V1’:‘I‘, any arbi-
trary or random sequence of digits is a legitimate real number.
Early in his career, Brouwer identified real numbers with decimal
expansions given by a rule: ‘Let us consider the concept: “real num-
ber between 0 and 1” . . . For the intuitionist [this concept] means
“law for the construction of an elementary series of digits after the
decimal point, built up by means of a finite series of operations”’
(Brouwer 1912: 85). For technical reasons, a focus on decimal
expansions proved to be awkward and, in any case, it is more com-
mon for mathematicians to speak of Cauchy sequences of rational
numbers, rather than decimal expansions. In these terms, for the
early Brouwer, only Cauchy sequences given by rules determine
legitimate real numbers.*

Later, however, Brouwer supplemented these rule-governed
sequences with what are sometimes called ‘free choice sequences’.
Brouwer envisioned a ‘creative subject’ with the power to freely
produce further members of an evolving choice sequence (or,
ignoring the technicality, further digits of a decimal expansion).
Free choice sequences do not have the aforementioned property,
ascribed to classical real numbers, ‘from the beginning the n“

‘ A sequence a,, a,, ... of rational numbers is Cauchy if for each rational
number € > 0 there is a natural number N such that for all natural numbers m, n, if
m > Nandn > N then — € <a_, — g, < €. A Cauchy sequence is given by a rule only
if there is an effective procedure for calculating the members a,, and an effective
procedure for calculating the bound N, given €. The principle of completeness is
that every Cauchy sequence converges to a real number.
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element is fixed for each n’. The key feature of both rule-governed
and free choice sequences is that each one is only a potential
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before us, as it were. We only have the ability to continue the
sequence as far as desired, either by following the rule or by having
the creative subject continue to elaborate a free choice sequence.
From this perspective, any theorems about a given real number
must follow from a ﬁnite amount of information about it. For a
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establish facts about the corresponding real number. For a free
choice sequence, however, there is no rule, and so the only infor-
mation the mathematician ever has about it—at any point in time—
consists of a finite initial segment of the sequence. Let a be a free
choice sequence. It follows that any property P that a mathemat-
ician ascribes to ¢ must be based on a finite initial segment of a
corresponding Cauchy sequence. That is, the mathematician
should never have to determine the entire sequence for a before she
is able to determine whether P holds of a—simply because the
entire sequence never exists. Thus, if a has a property P, then there
is a rational number € > 0 such that if a real number b is within € of
a, then P holds of b as well. Using similar reasoning, Brouwer
established that every function from real numbers to real numbers
is (uniformly) continuous!’

The proof of this theorem makes essential use of free choice
sequences. If only rule-governed real numbers are considered, then
discontinuous functions cannot be ruled out on logical grounds.
However, the existence of discontinuous functions entails
unwanted instances of excluded middle. For example, let f be any
function such that for all real numbers x, fx=0ifx <0 and fx =1 if
x > 0. So fhas a discontinuity at 0. Now define a Cauchy sequence

> Incidentally, it follows from Brouwer’s theorem that the axiom of choice fails
in intuitionistic analysis. One formulation of this axiom is that if for every real
number a there is a real number b such that a given relation R holds between a and
b, then there is a function f such that for every a, the relation R holds between a
and fa. The function fpicks out (or ‘chooses’) a value b. In intuitionistic analysis, it
is provable that for every real number a there is a natural number b such that
b>a. We need only approximate a to within, say, .5 and then pick a natural
number much larger than that approximation. However, there cannot be a con-
tinuous function f such that for every real number a, fa is a natural number and
fa>a.
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<a,> as follows: if there is no counterexample to the Goldbach
conjecture less than n, then a, = 1/n; otherwise let a, = 1/p, where
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p is the smallest such coun
a legitimate Cauchy sequence (since we can effectively calculate
each member, and effectively determine arbitrarily close
approximations—see note 4 above). Let a be the real number that
<a,> converges to. Notice that a >0 if and only if the Gold-
bach conjecture is false. What of the real number fa? We have
that fa =0 if the Goldbach conjecture is false and fa =1 other-
wise. So one cannot approximate fa to within .4 unless one
knows whether the Goldbach conjecture is true. Thus, if f were a
legitimate function, then either the Goldbach conjecture is true,
or it is not the case that the Goldbach conjecture is true. This last
is an unwanted instance of excluded middle (at least until the
Goldbach conjecture is settled, in which case we will use another
example).

This argument is an instance of the so-called ‘method of weak
counterexamples’, where the intuitionist demurs from a certain
principle of classical mathematics (the existence of discontinuities
in this case) by showing that the principle entails instances of
excluded middle. To take another example, consider a (purported)
function g such that gx=0 if x is rational and gx=1 if x is
irrational. Let ¢ be any real number. In order to determine whether
gc =0, one must determine whether ¢ is rational. If ¢ is a choice
sequence, one cannot determine whether ¢ is rational. Recall that
any information about a free choice sequence must be obtained
from a finite segment of a corresponding Cauchy sequence. Any
finite segment (or any finite decimal) can be continued to produce a
rational and any finite segment can be continued to produce an
irrational. If ¢ is rule-governed, then in some cases it may be pos-
sible to determine whether c is rational and thus whether gc = 0, by
reasoning about the rule. However, there is no general method for
calculating gc. Again, the existence of g entails unwanted instances
of excluded middle. Thus, the definition of g is not legitimate for an
intuitionist.

In contrast to this, discontinuous functions are a staple of clas-

n
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sical mathematics. They proved essential to physics (see, for
example, Wilson 1993a) but, as noted above, Brouwer was not
interested in tailoring mathematics to the needs of science.

Brouwer recognized that intuitionistic mathematics is not a mere
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restriction of classical mathematics, but is incompatible with it:°
‘there are intuitionistic structures which cannot be fitted into any

classical logical frame, and there are classical arguments not apply-

ing to any introspective image (Brouwer 1948: 91). The reason
concerns the basic differences in how the fields are construed:
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originate from thc circumstance that for mathematical entities . .. the

possession of a certain property imposes a special character on their way
of development from the basic intuition, and that from this special char-
acter of their way of development from the basic intuition, properties
ensue which for classical mathematics are false.

In addition to, or along with, the trend away from Kant’s phil-
osophy of mathematics, the thinkers covered in the previous two
chapters showed an increasing tendency to focus on the language
and the logic of mathematics. Logicists set out to reduce math-
ematics to logic, claiming that mathematics is no more than logic,
while formalists appealed to the practice of manipulating char-
acters in rule-governed ways. Alberto Coffa (1991) calls this trend
the ‘semantic tradition’, and Michael Dummett dubbed it the ‘lin-
guistic turn’. Brouwer bucked the trend. For him, language is no
more than an imperfect medium for communicating mental con-
structions, and it is these constructions that constitute the essence
of mathematics. Suppose that a mathematician accomplishes a
mental construction and wants to share it with others. She writes
some symbols down on paper and submits it to a journal. If all goes
well with the editor and then with subsequent readers, other math-
ematicians can experience the mental, mathematical construction
themselves, by reading the symbols in the journal. Like any other
medium, however, language is fallible. The readers may not ‘get it’
in the sense that they may not experience any construction after
reading the paper (or trying to), or they may experience a different
construction from that of the first mathematician. In either case,

*> There is a school of mathematics and philosophy, called ‘constructivism’, that
accepts neither excluded middle nor the non-classical aspects of intuitionistic
analysis. Roughly, Errett Bishop (1967) embraces only the common core of clas-
sical and intuitionistic mathematics. He insists on an epistemic understanding of
the language of mathematics. To say that there exists a number with a given
property, for example, one must give a method for finding such a number. Bishop
calls excluded middle a principle of ‘limited omniscience’.
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the problem is not with the first mathematical construction. As in
the film Cool Hand Luke, what we have here is (only) a fallure to

nn-r\fn Nn Drnn‘nar
communicate. On orouwer

the rules for communicating mathematics via language.

Thus for Brouwer, logicism and formalism both focus on the
external trappings of mathematical communication and com-
pletely ignore the essence of mathematics. He explicitly rejected
the concern with consistency proofs:
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in ... construction . .. neither the ordinary language nor any symbolic
language can have any other réle than that of serving as a non-
mathematical auxiliary, to assist the mathematical memory or to enable

different individuals to build up the same [construction]. For this reason
the intuitionist can never feel assured of the exactness of a mathematical

theory by such guarantees as the proof of its being non-contradictory, the
possibility of defining its concepts by a finite number of words . . . or the
practical certainty that it will never lead to a misunderstanding in human
relations. (Brouwer 1912, 81)

In other words, the focus on language and logic misses the point.

3. The Student, Heyting

In some ways, Brouwer’s student Arend Heyting was the more
influential of the two—via a contribution that Brouwer did not
approve, and even Heyting showed some ambivalence over. He
developed a rigorous formalization of intuitionistic logic. The sys-
tem is sometimes called Heyting predicate calculus (see, for example,
Heyting 1956: ch. 7, or some contemporary textbooks in symbolic
logic like Forbes 1994: ch. 10). Heyting 1930 suggested that from
the underlying metaphysical assumptions—realism in truth-value—
of classical logic, the language of classical mathematics is best
understood in terms of (objective) truth conditions. A semantics for
classical mathematics would thus delineate the conditions under
which each sentence is true or false. With the rejection of bivalence
(see §1 above), a semantics like this is inappropriate for intuition-

ism. Instead, intuitionistic language should be understood in terms
of proof conditions. A semantics would delineate what counts as a
canonical proof for each sentence. In rough terms, here are some
clauses:
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A proof of a sentence of the form ‘D and ¥’ consists of a proof
of ® and a proof of V.

< i3 3
A proof of a sentence of the form ‘either @ or ¥’ cons

either a proof of @ or a proof of V.

A proof of a sentence of the form ‘if @ then ¥’ consists of a
method for transforming any proof of @ into a proof of V.

A proof of a sentence of the form ‘not-®@’ consists of a pro-

cedure for transforming any proof of @ into a proof of absurd1ty
f\f"\
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A proof of a sentence of the form ‘for all x, ®(x)" consists of a
procedure that, given any n, produces a proof of the corresponding
sentence P(n).

A proof of a sentence of the form ‘there
consists of the construction o 1 n

ponding ®(n).

The system is now known as Heyting semantics (see also Dummett
1977: ch. 1). Notice that one cannot have a canonical proof of a
disjunction ‘either @ or ¥’ unless one has a proof of one of the
clauses. So one cannot have such a proof of an instance of excluded
middle ‘D or not-®’ unless one has either a proof of ® or a proof
that there can be no proof of ®. So many instances of excluded
middle do not seem to be justified by this semantics. Notice also
that one cannot prove a sentence that begins ‘there is an x” without
showing how to produce such an x. This is a formalization of a
major intuitionistic theme, shared by all schools of intuitionism.

It is ironic that Heyting’s work here is anathema to Brouwer’s
attitude toward language and logic. Heyting’s formal proposals
might have been an attempt to be helpful to his classical colleagues,
providing them with at least an outline of the linguistic trappings
of intuitionistic mathematics. Heyting shared Brouwer’s views
concerning the prevalence of mental construction and the down-
playing of language and logic. In “The Intuitionist Foundation of
Mathematics” (1931: 53), he wrote that the ‘linguistic accom-

paniment is not a representation of mathematics; still less is it
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mathematics itself. In the book Intuitionism (1956. 5), he echoes
Brouwer’s claim that language is an imperfect medium for com-
municating the real constructions of mathematics. The formal
system is itself a legitimate mathematical construction, but ‘one is
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never sure that the formal system represents fully any domain of
mathematical thought; at any moment the discovering of new

methods of reasoning may force us to extend the formal system’.
3

Heyting claimed that ‘logic is dependent on mathematics’, not the
other way around. So he did not intend his work in logic to codify
intuitionistic reasoning. Nothing can do that.

Be this as it may, Heyting’s formal work allowed intuitionistic
(and constructivist) mathematics to come under the purv1ew of

/J % ok ¥4 r\w/\f\r L\nt\ﬁvr /J 1-\ 1o

ordinary proof tneory, ana tnere 1S now an extensiv
formalized versions of intuitionistic arithmetic, analysis, set theory,
and so on. Much (but not all) of the meta-theoretical work on
intuitionistic logic employs a classical meta-theory. That is, the
typical proof-theorist uses classical logic in order to study formal
systems that themselves employ intuitionistic logic One lasting
contribution, at least from the pOxﬁt of view of the classical math-
ematician, has been a detailed study of the role of excluded middle
in the practice of mathematics. We now know just how different
intuitionistic mathematics is from classical mathematics—assuming
(against Brouwer and Heyting) that intuitionistic formal systems
accurately model intuitionistic mathematics. The same goes for
Bishop’s constructivism (see note 6 above). The meta-mathematical
work has also led to a vigorous debate on the extent to which
intuitionistic mathematics can serve the needs of science.’

Heyting’s philosophical writing reiterates Brouwer’s thesis that
mathematics is mind-dependent and the focus on mathematical
construction:

a natural
function of his intellect, as a free, vital activity of thought. For him,
mathematics is a production of the human mind . . . [W]e do not attribute
an existence independent of our thought, i.e., a transcendental existence,
to . .. mathematical objects . . . [M]athematical objects are by their very

nature dependent on human thought. Their existence is guaranteed only

insofar as thev can be determined hv thougoht. Thev have properties nn]v

The intuitionist mathematician proposes to do mathematics as

insofar as they can be determir thought. They have properties onl
insofar as these can be discerned in them by thought . . . Faith in transcen-
dental . . . existence must be rejected as a means of mathematical proof

. [TThis is the reason for doubting the law of excluded middle. (Heyting
1931; 52-53)
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the outcome of this debate.
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With his teacher, Heyting argues that classical mathematics relies
on a ‘metaphysical’ principle that the objects of mathematics exist

independently of the mathematician and that the truths of math-

ematics are objective and eternal. He concedes that a mathemat-
ician is free to hold or reject such metaphysical principles in his
spare time. However, the only way to avoid ‘a maze of meta-
physical difficulties’ is to ‘banish them from mathematics’ itself

(Heytmg 1956: 3). Heytmg accuses the classical mathematician of
A AL
u IUVLC,

If ‘to exist’ does not mean ‘to be constructed’, it must have some meta-
physical meaning. It cannot be the task of mathematics to investigate this
meaning or to decide whether it is tenable or not. We have no objection
against a mathematician privately admitting any metaphysical meaning he
likes, but Brouwer’s programme entails that we study mathematics as some-
thing simpler, more immediate than metaphysics. In the study of mental
mathematical constructions ‘to exist’ must be synonymous with ‘to be
constructed’. (Heyting 1956: 2)

In short, Heyting insists that the practice of mathematics should
not rely on any metaphysics.®

In some places, he seems to go further with the mind-
dependence, and even to claim that mathematics is empirical:

A mathematical proposition expresses a certain expectation. For example,
the proposition, ‘Euler’s constant C is rational’ expresses the expectation
that we could find two integers a and b such that C=a/b . .. The affirm-
ation of a proposition means the fulfillment of an intention. The assertion

‘e innal’
w1
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s in fact found the
desired integers . . . The affirmation of a proposition is not itself a prop-
osition; it is the determination of an empirical fact, viz., the fulfillment of
the intention expressed by the proposition. (Heyting (1931: 59)

Intuitionistic mathematics consists . . . in mental constructions; a math-
ematical theorem expresses a purely empirical fact, namely the success of
a certain construction. ‘2 + 2 =3 + 1’ must be read as an abbreviation for
the statement: ‘I have effected the mental constructions indicated by
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? In §5 of the previous chapter we saw that Haskell Curry claimed that a main
virtue of his formalism is that it is free of metaphysical assumptions. Metaphysics-
avoidance seems to be a common condition among philosophers of mathematics.
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. [S]tatements made about the constructions . . . express purely empir-
ical results. (Heyting 1956: 8)

I suggest, however, that statements like these should not be taken
too literally. Heyting was not advocating an empiricism like that of
John Stuart Mill (see ch. 4, §3 above). Suppose that someone did a
bLuuy of human bculgb doing sums. If 2+2 and 3+ 1 wer
replaced with seven-digit numbers, the empirical results would cer-
tainly differ from the mathematical ones. After all, humans do
make mistakes. Surely, Heyting would take the empirical data to be
irrelevant to mathematics. Along similar lines, the intuitionist
accepts theorems like ‘either 2'%" + 1 is prime or 2% + 1 is compos-
ite’ even though the size of the factors (if any) would defy actual
empirical realization.

We have encountered similar idealizations several times before in
this study. I suggest that idealizations make it difficult for either
party to claim that their view is the metaphysically neutral one. In
philosophy of mathematics, metaphysics is all but inevitable—
although one can query the relevance of metaphysics to the practice
of mathematics (see ch. 1, §2). Brouwer’s own Kantian position is
not metaphysically neutral. He expresses definite views on the
nature of mathematics and its entities. One would think that the
best way to approach neutrality would be to reject Brouwer’s free
choice sequences and to stick with something more like Bishop’s
constructivism (note 6 above), the common core of classical and
intuitionistic mathematics. Heyting (1931: 57) admits that intuition-
istic mathematics would be ‘impoverished’ if free choice sequences
were dropped. And classical mathematics would be impoverished
without excluded middle.

Heyting’s early paper (1931) reflects Brouwer’s claim that
classical mathematics is flawed and should be replaced with intui-
tionism: ‘intuitionism is the only possible way to construct

mathematics.” However, his book (1956) is more eclectic, arguing
that intuitionistic mathematics deserves a nlace ‘aloneside’ classical
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mathematlcs. Heyting wrote that the intuitionist does not claim a

‘monopoly’ on mathematics, and will rest content if the classical

mathematician ‘admits the good right of” the intuitionistic concep-

tion. A nice compromise. However, Heyting remained dubious of

the ‘metaphysical’ assumptions that supposedly underlie classical
S

o
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4. Dummett

Recall that both Brouwer and Heyting considered language to be an
imperfect medium for communicating mental mathematical con-
struction, the real essence of mathematics. For them, logic con-
cerns the mere forms for the deployment of this medium, and so a
direct focus on language and logic is far removed from the proper
field of debate. In contrast, Michael Dummett’s main approach to
mathematics and its logic is linguistic from the start. His philo-
sophical interests lie more with intuitionistic logic than with math-
ematical matters (although free choice sequences are treated in
Dummett 1977: ch. 3). Like Brouwer and unlike Heyting, Dummett
does not have an eclectic orientation. Rather, he explores the thesis
that ‘classical mathematics employs forms of reasoning which are
not valid on any legitimate way of construing mathematical state-
ments . . ." (Dummett 1973: 97).

Dummett suggests that any consideration concerning which
logic is correct must ultimately turn on questions of meaning. He
thus adopts a widely held view that the rules for drawing inferences
from a set of premisses flow from the meaning of some of the
terms in the premisses, the so-called ‘logical terminology’. This is
consonant with the thesis that logical inference is analytic, or
meaning-constitutive.

By its nature language is a public medium, and as such, the
meanings of the terms in a language are determined by how the

terms are rnrrprrlv used in discourse. As Lewis Carroll’s Hnmnr}'
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Dumpty might put it, the users of a language are in charge of how
the terms are to be used. Their use determines meaning. What else
can? Dummett (1973: 98-99) forcefully elaborates this point:

The meaning of a mathematical statement determines and is exhaustively
determined by its use. The meaning of such a statement cannot be, or
cannot contain as an ingredient, anything which is not manifest in the use
to be made of it, lying solely in the mind of the individual who appre-

hends that meaning if two individuals agree combpletelv about the use
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to be made of [a] statement, then they agree about its meaning. The
reason is that the meaning of a statement consists solely in its role as
an instrument of communication between individuals . . . An individual
cannot communicate what he cannot be observed to communicate: if an
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individual associated with a mathematical symbol or formula some
mental content, where the association did not lie in the use he made of

the vmhnl or FV mula then he could not convevy that content ]'“r means
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of the symbol or formula, for his audience would be unaware of the
association and would have no means of becoming aware of it.

To suppose that there is an ingredient of meaning which transcends the
use that is made of that which carries the meaning is to suppose that

someone m1ght have learned all that is directly taught when the language
him. and micht then behave i
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way like someone who understood the language, and yet not actually
understand it, or understand it only incorrectly.

This common-sense view of language supports Dummett’s
manifestation requirement, a thesis that anyone who understands the
meaning of an expression must be able to demonstrate that under-
standing through her behaviour—through her use of the expres-
sion: ‘there must be an observable difference between the behaviour
or capacities of someone who is said to have . . . knowledge [of the
meaning of an expression] and someone who is said to lack it.
Hence it follows . . . that a grasp of the meaning of a mathematical
statement must, in general, consist of a capacity to use that state-
ment in a certain way, or to respond in a certain way to its use by
others.” Dummett identifies an important criterion of any seman-
tics that is to play a role in philosophy: understanding should not be
ineffable. One understands the expressions available in a language
if, and only if, one knows how to use the language correctly.

The common slogan for such views is meamng is use’, but this
can be misleading. Advocates of the views are often criticized for
leaving ‘use’ vague. Surely some account is needed if this notion is
to have such a central place in philosophy. As Ludwig Wittgenstein

> Dummett’s target includes Frege’s view that the ‘senses’ of expressions are
objective, mind-independent entities (e.g. Frege 1892). According to that view, to
understand a sentence is to grasp its sense. Dummett (1973: 100) wrote that a
‘notion of meaning so private to the individual is . . . irrelevant to mathematics as
it is actually practised, namely as a body of theory on which many individuals are
corporately engaged, an inquiry within which each can communicate his results to
others’. Note the stark contrast with Dummett’s fellow intuitionists Brouwer and
Heyting.
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(1978: 366-367) put it, ‘It all depends [on] what settles the sense of a
proposition. The use of the signs must settle it; but what do we

corint ac the 11ce?’
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Some articulations of ‘use’ make it absurd to motivate the revi-
sion of logic and mathematical practice through considerations of
meaning. If everything the mathematician does (and gets away
with) is legitimate use, then the law of excluded middle is as legit-
imate as anything. As negation and disjunction are used in practice,

luded middl ¢ Pr m
excluded middle is correct. Practising mathematicians do not balk

at its employment, and surely they know what they are talking
about if anybody does. For better or worse, classical logic has won
the day among mathematicians. So how can there be an argument
for rejecting the law of excluded middle along semantic lines? On a
view like this, it seems, all use is sacrosanct. Well, as Wittgenstein
asked, ‘what do we count as the use?’

There are at least two orientations toward mathematical lan-
guage that would suggest an interpretation of ‘use’ along such
strongly anti-revisionist lines. One such view is formalism, the
thesis that correct mathematical practice can be codified into for-
mal deductive systems (see the previous chapter). If classical logic is
an ingredient of the appropriate deductive systems, then the issue
of classical logic is settled. Suffice it to note that when both Dum-
mett and the previous intuitionists—including Heyting—speak of
‘proof’, they do not mean ‘proof in a fixed formal system’. For the
intuitionist, proof is inherently informal. Formalism and intuition-
ism are not natural allies.

Another anti-revisionist understanding of language ‘use’ is what
Dummett calls a ‘holistic’ account: ‘On such a view it is illegitimate
to ask after the content of any single statement . .. [TThe signifi-
cance of each statement . .. is modified by the multiple connec-
tions it has ... with other statements in other areas of language
taken as a whole, and so there is no adequate way of understanding
the statement short of knowing the entire language.” W. V. O.
Quine’s ‘web of belief is perhaps a view like this (see ch. 8, §2).
Dummett argues that on such a semantic holism, there is no way to
criticize a particular statement, such as an instance of the law of
excluded middle, short of criticizing the entire language. This is not
quite correct. Quine himself raises the possibility of changes to
logic and mathematics owing to recalcitrant empirical data. Clearly,
however, on a holistic view like Quine’s, criticism of mathematical
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practice does not come from semantics, nor from reflections on
meaning and understanding generally.

Dummett (1991a) suggests that the enterprise of sem

ory does not go well with the sort of semantic holism now under
consideration. We need not adjudicate this here. A typical seman-
tics is compositional in the sense that the semantic content of a
compound statement is analysed in terms of the semantic con-
tent of its parts. In the prevailing Tarskian semantics, for

exami PG | tbha tenaehh Airinnme ~fF A £ 11 Aef A
¢xampie, tne trutn conait ions of a compleA ioOrmuia are gennea

in terms of the truth conditions of its subformulas. For Dum-
mett, the problem is that this semantics runs afoul of the mani-
festation requirement. On a classical, bivalent interpretation of a
mathematical theory,

the central notion is that of truth: a grasp of the meaning of a sentence

. consists in a knowledge of what it is for that sentence to be true. Since,
in general, the sentences of the language will not be ones whose truth-
value we are capable of effectively deciding, the condition for the truth of
such a sentence will be one which we are not, in general, capable of
recognising as obtaining whenever it obtains, or of getting ourselves into a
position in which we can so recognise it. (Dummett 1973: 105)

To satisfy the manifestation requirement, Dummett argues that
verifiability or assertability should replace truth as the main con-
stituent of a compositional semantics. Presumably, language users
can manifest their understanding of the conditions under which
each sentence can be verified or asserted. In mathematics, verifica-
tion is proof, since a mathematician can assert a given sentence only
if she has proved it. Dummett’s proposal thus invokes the central
theme of Heyting’s semantics for intuitionistic logic. Instead of
providing truth conditions of each formula, we supply proof condi-
tions (see §3 above, or Dummett 1977: ch. 1 for details).

Dummett’s alternative to semantic holism is what he calls a
molecular semantics, according to which: ‘individual sentences carry
a content which belongs to them in accordance with the way they
are compounded out of their own constituents, independent of
other sentences of the language not involving those constituents ...
(Dummett 1973: 104). Dummett’s proposal is that at least some
crucial parts of language can be understood independently of any
other parts. This applies, first and foremost, to the logical termin-
ology: connectives such as negation, conjunction, disjunction, and
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‘if-then’, and quantifiers like ‘there is’ and “for all’. Neil Tennant
(1997: 315), a prominent Dummettian, puts it well:

the contention here is that the analytic project must take the {logical]
operators one-by-one. The basic rules that determine logical competence
must specify the unique contribution that each operator can make to the
meanings of complex sentences in which it occ nd, d
validity of arguments in which such sentences occur . . . It follows . . . that
one [should] be able to master various fragments of the language in
isolation, or one at a time. It should not matter in what order one learns
(acquires grasp of) the logical operators. It should not matter if indeed
some operators are not yet within one’s grasp. All that matters is that
P AT TN 11 PUPAPUS RN -
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matic rules governing inferences involving it.
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analysis of language might reveal an incoherence in how the logical
operators are used. In particular, the philosopher might discover
a disharmony between different aspects of how the terms are
used. Dummett and, with more detail, Tennant argue that the
ways that logical operators are typically introduced into proofs
conflicts with classical principles and inferences. That is, the rules
for introducing—and showing that one grasps the meaning of—the
negation and disjunction operators separately do not justify
excluded middle when the connectives are combined. Tennant
(1997: 317) calls excluded middle a ‘shoddy marriage of conveni-
ence’. Thus, Dummett and Tennant support Heyting’s argument
that intuitionistic logic is justified on this semantics, but classical
logic is not.

In the Dummettian framework, a major presupposition of clas-
sical mathematics is that there are, or may be, truths that cannot
become known. A bivalent semantics suggests that truth is one
thing and knowability another. Dummett’s approach, sometimes
called global semantic anti-realism, entails that, at least in principle, all
truths are knowable. The possibility of an unknowable truth is
ruled out a priori. As we saw in §2 above, Brouwer himself adopted

SP 1antic anti-realism for marhpm:\hrc as well as ‘Dractical life and
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The going here is not straightforward. Notice that even with
Heyting semantics, a language satisfies the manifestation require-
ment only under the pesky idealizations encountered earlier. No
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one can manifest understanding of the proof conditions of a long
formula, and no one can know of some large numbers whether
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that every natural number is either prime or composite. The reason
is that we have a finite method for determining whether a number is
prime. It does not matter how feasible this method is or even
whether anyone has carried it out in a given case. In particular
2'%" 4+ 1 js either prime or composite. Tennant (1997: ch. 5) prov1des
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semantics.

On the other hand, we should not idealize too much. The route
from Heyting semantics to the repudiation of classical logic depends
on a certain pessimism concerning human mathematical abilities
(see, for example Posy 1984 and Shapiro 1991: ch. 6). If human
Dt:lngs are Capamc of ucuuli‘lg the truth value of every well-formed
mathematical statement, then classical logic will prevail after all—
even under Heyting semantics. It seems that Dummett’s intuition-
ism lies between a strict finitistic view that we only understand
what we have actually proved, and either a straightforward realism
that countenances unknowable truths or a robust optimism that
holds that for each unambiguous mathematical sentence @, the
mathematician can determine whether @ is true or false. Tennant
(1997: chs. 6-8) provides a defence of intuitionistic logic as the right
balance of these possibilities.

A defender of classical logic has two options in light of
Dummett’s critique. One is to provide a semantics that meets the
manifestation, separability, and harmony requirements and still
sanctions classical logic. A philosopher who takes this route accepts
the broadly Dummettian framework and, working within that
framework, argues that classical logic is justified. The debate is likely
to turn on questions of semantics, proper idealization, and the
extent and details of manifestation. Another option for the classical
mathematician would be to reject Dummett’s entire framework.
The philosopher concedes that classical logic does not enjoy the kind
of justification that Dummett demands, but she argues that classical
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mathematics does not stand in need of this sort of 1ncnﬁr9nnn The
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fruit and power of classical mathematics estabhshes its place in our
intellectual lives. If classical mathematics conflicts with the Dummet-
tian framework for semantics, it is the latter that must go. Those
who lean this way may be tempted by holism (see ch. 8, §2).
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As Dummett (1973: 109) himself points out, the foregoing con-
siderations are very general, turning solely on how language is

understood. Thus, if his conclusions are sound they support the

adoption of intuitionistic logic for all discourse, not just for math-
ematics. So Dummett goes beyond the prior intuitionists Brouwer
and Heyting, who agree that classical logic is appropriate for ordin-
ary reasoning about finite collections of mind-independent objects.
This motivates Dummett to search for other arguments for intui-
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‘Is there, then, any alternative defence of the rejection, for math-
ematics, of classical in favour of intuitionistic logic? Is there any
such defence which turns on the fact that we are dealing with
mathematical statements in particular, and leaves it open whether or
not we wish to extend the argument to statements of any other
general class?”’

Dummett concludes that one route to such a ‘local’ revisionism
is a ‘hard-headed’ finitism in which one denies that there is a
determinate fact concerning the outcome of a procedure that has

not been carried out. On this view, one cannot conclude

2'%! + 1 is prime or composite

until one has carried out the relevant procedure. So one demurs
from the idealizations discussed previously. On such a view exclu-
ded middle remains unjustified, but the hard-headed finitist has to
restrict logic even further than the intuitionist does. It is not clear
which inferences and principles of intuitionistic logic are justified
from the hard-headed approach. Some of the (intuitionistically
correct) inferences that lead to 2'®' + 1 is prime or composite’ have
to be jettisoned. If the intuitionist does not throw out the baby with
the dirty bathwater, surely the hard-headed finitist does.
Dummett’s recent work (1991, 1991a) provides another angle on
the repudiation of classical mathematics. In an early paper on
Godel’s incompleteness theorem (Dummett 1963), he defines a
concept to be indefinitely extensible if it is not possible to delineate
the range of objects to which the concept applies. That is, a concept
is indefinitely extensible if any attempt to delineate the extension of
the concept leads to an instance of the concept not so delineated.
Dummett argues that the incompleteness theorem shows that the
notion of arithmetic truth is indefinitely extensible. Let T be any
effective procedure for enumerating arithmetic truths. An applica-
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tion of the incompleteness theorem yields an arithmetic truth @
not enumerated by T. So T fails as a characterization of arithmetic
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Dummett argues that virtually any substantial mathematical
domain—the natural numbers, the real numbers, the set-theoretic
hierarchy, and so on—is indefinitely extensible. Any attempt to
delimit the domain leads to extensions of it. This may be related to
the prior intuitionistic claim that there is no actual infinity, only
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Let d be a domain. Dummett suggests that a quantifier “for every
d’ is coherent whether or not d is indefinitely extensible. Otherwise,
mathematics is doomed from the start. In the later work, however,
he argues that classical logic applies to a domain only if it is not
indeﬁnitely extensible. This conclusion is based in part on an analy-
sis of mathematical | 10gic, model Lhe(‘)i‘y il parucular 11 pi‘()'v’idulg
an interpretation of a formal language, one is required to specify a
domain of discourse. Dummett argues that the usual proof that clas-
sical logic is sound for classical model theory presupposes that such
a domain is definite—not indefinitely extensible. Thus, he argues,
classical logical theory does not apply to mathematics where the
range of the quantifiers is indefinitely extensible. But we still need
an argument that full intuitionistic logic applies to such domains.

5. Further Reading

Benacerraf and Putnam 1983 contains a delightful dialogue from
Heyting 1956, and translations of Brouwer 1912 and 1948, and
Heyting 1931. It also has Dummett 1973. Van Heijenoort 1967
contains translations of other relevant papers by Brouwer, notably
Brouwer 1923. Another interesting source in English is Brouwer
1952. Heyting 1956 and Dummett 1977 are excellent book-length
introductions to intuitionistic mathematics, both in English.
Dummett 1978 contains many of his important philosophical
papers (including 1963 and 1973). For more on indefinite extensibil-
ity, see Dummett 1994. Dummett’s more recent work in the
philosophy of mathematics is developed in 1991 and 1991a. See
Tennant 1987 and 1997 for an extensive development of a broadly
Dummettian programme. See also Prawitz 1977.



