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Mathematics and logic, historically speaking, have been
entirely distinct studies . . . But both have developed in mod-
ern times: logic has become more mathematical and math-

ematics has become more logical. The conseauence is that it

............................ gical. The consequence is that
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the two; in fac the two are one . .. The proof of their iden-

tity is, of course, a matter of detail.
(Russell 1919: ch. 18)

FTHE previous chapter presented Immanuel Kant’s views that (1)

1 mathematics is knowable independent of sensory experience—
mathematics is a priori—and (2) the truths of mathematlcs cannot
be determined by analysing concepts—they are synthetic. Although
one can hardly overestimate Kant’s influence, subsequent philo-
sophers had difficulty squaring these views with developments in
mathematics and science. As oted above, Alberto Coffa (1991)

ned that a main concern of nineteenth-centurv nhnlnqnnhv was
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to account for the prima fac1e neces51ty and a priori nature of
mathematics and logic without invoking Kantian intuition, or some
other reference to a priori forms of spatial and temporal intuition.
The two alternatives to Kant’s view seem to be that mathematics is
empirical (and so a posteriori\ and that mathematics is analytic.
1ill’s bold
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attempt at the former alternauve. We now move forward a few
decades, to near the turn of the twentieth century, and consider
views that mathematics is analytic (or all but analytic). Some of the

iv
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authors examined in this chapter hold that at least parts of math-

ematics are, or can be reduced to, logic. The idea is that the con-
cepts and objects of mathematics, such as ‘number’, can be defined
from logical terminology; and with these definitions, the theorems
of mathematics can be derived from principles of logic. The view is
called ‘logicism’. We begin with Gottlob Frege, the first accom-
plished mathemauaan we meet in our historical survey ( other than

1. Frege

We must briefly attend to the changing notions of analyticity and a
priori knowledge. These mean different things to different thinkers.
Recall that for Kant, if a proposition is in subject-predicate form,
then it is analytic if its subject concept contains its predicate con-
cept.! The central idea is that analyticity turns on the metaphysics
of concepts. One determines whether a proposition is analytic by
analysing its concepts.

Frege employed a different, but perhaps related distinction. He
held that analyticity is like a priority in being an epistemic concept,
turning on how a given proposition is known (or knowable):

cation for makmg the judgement. Where there is no Justlﬁcatlon the
possibility of drawing the distinctions vanishes. When . . . a proposition is
called a posteriori or analytic in my sense, . . . it is a judgement about the
ultimate ground upon which rests the Justlﬁcatlon for holding it to be true

The
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and of following it up right back t

this process, we come only on general logical laws and on definitions, then
the truth is an analytic one . .. If, however, it is impossible to give the
proof without making use of truths which are not of a general logical

nature, but belong to the sphere of some general science, then the prop-

l"

' One of Frege’s innovations was to dislodge philosophers from the dominance
of the subject-predicate form of propositions. Instead, he thought of each prop-
osition as decomposable into function and argument in a variety of ways, a notion
he borrowed from mathematics.



LOGICISM 109

osition is a synthetic one. For a truth to be a posteriori, it must be impos-

sible to construct a proof of it without including an appeal to facts, i.e., to
truths which cannot be proved and are not general ... But if, on the
contrary, its proof can be derived exclusively from general laws, which
themselves neither need nor admit of proof, then the truth is a priori.
(Frege 1884: §3)

Although Frege believed that every knowable proposition has an

‘ultimate ground’, something like a canonical proot, the crucial
philosophical definitions can be formulated without presupposing
this. A proposition is a priori if either it is an unprovable ‘general
law’ or it has a justification—proof—which relies only on such

‘general logical law or definition” or it has a proof that relies only

on such general logical laws and definitions.” There is a particularly
logical source of knowledge, and the analytic truths are known on
that basis.

The above passage indicates that Frege held that only knowable
or justifiable propositions can be analytic or a priori. Since he also
held that arithmetic and real analysis are analytic, he believed that
every truth about the natural numbers and every truth about the
real numbers is knowable. That is, every such truth is either prov-
able or an unprovable general logical law or definition. Frege was
committed to the view that for every proposition about the natural
numbers or the real numbers, either it or its negation is knowable.

To show that arithmetic propositions are analytic, Frege had to
show how to derive them from general logical laws and definitions.
His logicist programme was an attempt to do just that, at least for
the basic principles of the field.

Frege began with a general fact about counting. Someone can
determine if two collections are the same by putting them in one-
to-one correspondence. Let us say that two concepts are equinumer-
ous if there is a one-to-one correspondence between the objects
falling under one and the objects falling under the other. For
example, on a set table the napkins are equinumerous with the
plates if there is exactly one napkin corresponding to each plate. In
a monogamous society the husbands are equinumerous with the

? This raises a question about the ‘general (logical) laws and definitions’. How
are those known? To what extent are they a priori? Perhaps Frege took general
laws and definitions to be self-evident, or self-evidently a priori.
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wives (by definition). Despite the particle ‘numerosity” in the name,
Frege showed how to define equinumerosity using only the
resources of (so-called ‘higher-order’) logic, without presupposing
natural numbers, or the notion of number generally. He (1884: §63)
proposed the following thesis, now known as ‘Hume’s principle’:’

For any concepts F, G, the number of F is identical to the number
of G if and only if F and G are equinumerous.

As Frege intends it, the phrase ‘the number of F’ is a grammatical
form for denoting an object. That is, ‘the number of F is a proper

name (broadly speaking), or What is today called a ‘singular term
v of Chanter 2
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ments of mathematics have objective truth values.
Let Z be the concept ‘not identical to itself’. Since every object is
1dent1cal with itself, no object has the concept Z. That is, for every

alse. Frege defined the number zero to be the num-

Frege (Frege 1884 §76) then defined the successor relation
among numbers. The ‘number n follows in the series of natural
numbers directly after m’ if and only if

there exists a concept F, and an object falling under it x, such that
the number which belongs to the concept F is n and the number
which belongs to the concept “falling under F but not identical to x’
s m.

In other words, n is a successor to m if there is a concept which
applies to exactly n objects and when we remove one of those
objects, m objects remain. Frege’s precise language is designed to
say this using only logical terminology like ‘object’, ‘concept’, and
‘identity’.

Let T be the concept ‘identical with zero’, so that for any object
b, Tb holds if and only if b = 0. That is, T holds of exactly one thing,
the number zero. Frege defined the number one to be the number

* The name follows Frege’s citation of a similar principle by the eighteenth-
century empiricist David Hume. Fregean concepts exist objectively, and so are not
mental entities, but they can be grasped through the mind. In the terminology of
contemporary philosophy, ‘property’ might be a better term than ‘concept” here.



LOGICISM 111

of the concept T. He showed that the number one ‘follows zero in
the series of natural numbers’, according to his own definition.
Frege reminded the reader that this ‘definition of the number 1
does not presuppose, for its objective legitimacy, any matter of
observed fact’. In other words, the underlying propositions are a
priori and objective.
The next step is to deﬁne the number two to be the number of

for the rest of the natural numbers In general let n be any number
in the series of natural numbers. Consider the concept S,, ‘member
in the series of natural numbers ending with n’. That is, for any
object a, S,a holds if and only if 4 is a natural number less than or
equal to n. Frege showed that the number of the concept S, is a
are infinitely many natural numbers.

It remains to give a definition of natural number. One would like
to say that n is a natural number if n is obtained from the number
zero after finitely many applications of the successor operation. As
a definition, however, this would be circular, since it invokes the
notion of ‘finitely many’. Frege devised a Way to accomplish the
definition using only logical resources. To paraphrase, n is a natural
number if and only if

For any concept F, if F holds of the number zero and if for every
object d, from the proposition that d falls under F it follows that
every successor of d falls under F, then n falls under F.

In more contemporary terms, # is a natural number if n falls under
every concept which holds of zero and is closed under the succes-

sor relation. In symbols:
Nn = VF[(F0 & VdVd'( (Fd ¢ ‘d" is a successor of
4’y = Fd') ) — Fn].
Frege then showed how common arithmetic propositions, such as

the induction principle, follow from these definitions. The deriv-

ation of the basic principles of arithmetic from Hume’s principle is
now known as Freoe’s theorem.

&Y [ A3 2
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determines identities of the form ‘the number of F = the number
of G’, where F and G are any concepts, but it does not determine
the truth value of sentences in the form ‘the number of F = t’

’
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where t is an arbitrary singular term. In particular, Hume’s prin-
ciple does not determine whether the number 2 is identical with a
given set, or with Julius Caesar. I presume that no one is going to
confuse the number 2 with the emperor, but Hume’s principle
itself does not settle the question.

To sum up, so far Frege has (brilliantly) determined the relations
between the natural numbers, and provided adequate definitions of

has not identified the natural numbers. What, after all, is the num-
ber 2? The underlying idea is that we have not succeeded in charac-
terizing the natural numbers as objects unless and until we can
determine how and why any given natural number is the same or
different from any object whatsoever. To borrow a slogan from W.
logicism, the problem of identifying the natural numbers has
become known as the ‘Caesar problem’ (see Heck 1997a).
Notice that the development so far takes Frege’s principle as an
unjustified starting-point. It is part of Frege’s methodology that one
should try to prove what one can, and thus reveal its epistemic
ground. He attempted to do so for Hume’s principle.
The extension of a concept is the class of all objects that the
concept applies to. For example, the extension of ‘chair’ is the class
of all chairs. Frege (Frege 1884: §68) defined natural numbers in
terms of concepts and their extensions:

The number which belongs to the concept F is the extension of the
concept equinumerous with the concept F’.

The number two, for example, is the extension (or collection) con-
taining all concepts that hold of exactly two objects.* So the con-
cept of being a parent of Aviva Shapiro is a member of the number
two, as is the concept of being a shoe on a given fully-dressed
person, and the concept of being a prime number less than five.
The number three is the extension (or collection) containing all
concepts that hold of exactly three objects, and so on.

Frege (1884: §73) showed how Hume’s principle follows from
these definitions and some common properties of extensions. With

* It is interesting that Frege did not raise a Caesar-type problem for extensions.
How do we know, for example, whether Caesar is the extension of those concepts
that hold of exactly two objects? Since extensions are closely linked to concepts,
perhaps Frege took them to be already known.
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Frege’s theorem, this completes the derivation of arithmetic, and
the establishment of logicism for the natural numbers—provided
that the above definitions are correct. Under these assumptions,
Frege succeeded in showing that arithmetic is analytic. The account
proceeded through a rigorous and eminently plausible account of
the application of arithmetic to the counting of concepts and col-
lections of objects.

have thought that so much could be dCI‘IVCd from SO httle and in
particular, from such simple and obvious facts about concepts,
extensions, and counting? However, arithmetic is only an early part
of mathematics. Frege’s plans to extend logicism to real analysis
were not developed into a detailed programme (see, for example,
on the extent to which Fregean logicism might accommodate some
of the contemporary branches of mathematics, such as complex
analysis, topology, and set theory.

A reader familiar with contemporary logic ght notice an
incongruity in Frege’s log gicism. The thesis that princip ] s of arith-
metic are derivable from the laws of logic runs agamst a now
common view that logic itself has no ontology. There are no par-
ticularly logical objects.” From this perspective, logicism is a non-
starter, at least for an ontological realist like Frege, who held that

natural numbers exist as independent objects. There are infinitely
manv npatural numbers. and so if logic savs nothing about how
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many objects there are, then one cannot define the natural num-
bers in logic.

Frege, however, followed a tradition that concepts are in the
purview of logic, and, for Frege, extensions are tied to concepts. So
logic does have an ontology. Logical objects include the extensions

nF some concents that exist of necessitv. Thus. logical obiects exist
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of necessity, and so the necessity of logic is maintained.

As indicated from the first quoted passage above, Frege explicitly
distinguished logic from special sciences, such as physics. Logic is
topic-neutral since it is universally applicable; logical truths are

> As we saw in §2 of the previous chapter, the pedigree for this view traces to
Kant. In discussing a particular argument for the existence of God, Kant claimed
that analysis of concepts cannot entail the existence of anything. If Kant is correct
about this, and if logic consists of conceptual analysis, then there are no specific-
ally logical objects.
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absolutely general. The use of concepts—and their extensions—
does not undermine this neutrality. One needs to deal with con-
cepts in order to think at all. For any sort of objects, there are
concepts of those objects and extensions of those concepts. Frege
showed how to construct the natural numbers from this logical
ontology. He also pointed out that arithmetic enjoys the universal
applicabilitv of logic. Any subject-matter has an ontologv. and if

We should note that Frege did not extend hlS logicism to geom-
etry. On that score he was a Kantian, holding that the principles of
Euclidean geometry are synthetic a priori (with those notions
understood in a Fregean sense, as above). Frege held that geometry
does have a special, non-universal subject-matter—space. We need

fart] ] : o the | laries of looi
(see Shapiro 1991: chs. 1-2). There are larger issues on the horizon.

Even limited to arithmetic—and waiving the boundary issues—it

is sad to report that our story does not have a tidy and compelling

endin,cr_ Frege’s later Grundgesetze der Arithmetik (1893, 1903) con-
a full dpvelnnmpnr nf a fhenrv of concepts and their exten-

sions. For present purposes, the cruc1a1 plank is the now infamous
Basic Law V, paraphrased as follows:

For any concepts F, G, the extension of F is identical to the exten-
sion of G if and only if for every object a, Fa if and only if Ga.

~th Ae th +
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if F and G hold of the same objects.
A letter from Bertrand Russell in 1902 (see van Heijenoort 1967:
124-5) revealed that Basic Law V is inconsistent.® Let R be the

concept that applies to an object x just in case
there is a concept F such that x is the extension of F and Fx is false.

Let r be the extension of R. Suppose that Rr is true. Then there is a
concept F such that r is the extension of F and Fr is false. It follows
from Basic Law V that Rr is also false (since r is also the extension of
R). Thus if Rr is true, then Rr is false So Rr is false. Then there is a
e extension of F and Fr is false.

i This is a contradic-
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So, by definition, R holds of r, an
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® The mathematician Ernst Zermelo discovered the paradox about a year
earlier. See Rang and Thomas 1981.
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tion, and so Basic Law V is inconsistent. This is now known as

Russell’s paradox.

Frege took this paradox to be devastating to his logicist pro-
gramme. Nevertheless, he sent Russell a gracious reply, almost
immediately:
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would almost say, consternation, since it has shaken the basis on which

intended to build arithmetic . . . [The matter is] all the more serious since,
with the loss of my Rule V, not only the foundations of my arithmetic, but
also the sole possible foundations of arithmetic, seem to vanish . . . In any
case your discovery is very remarkable and will perhaps result in a great
advance in logic, unwelcome as it may seem at first glance. (van Heijenoort
1967: 127-8)

In the same letter, Frege gave a more accurate formulation of the
paradox. After some attempts to recover from the blow, Frege

abandoned his logicist project, left in ruins. We turn to others who
starting with Russell himself.

....... y 218212 vitz2 1

2. Russell

RusseL (1010 7 held that Freoe’e aceniint anf the nariiral nnim-
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The question “What is number?’ is one which has been often asked, but
has only been correctly answered in our own time. The answer was given
by Frege in 1884, in his Grundlagen der Arithmetik. Although this book is
quite short, not difficult, and of the very highest importance, it attracted
almost no attention, and the definition of number which it contains
remained practically unknown until it was rediscovered by the present
author in 1901.

Russell added a footnote that the same definitions are ‘given more
fully and with more development” in Frege (1893) and (1903). We
may conclude that Russell did not accept Frege’s assessment that

” In discussing Frege’s seminal logical work, Begriffsschrift (1879), Russell (1919:
ch. 3) said that in “spite of the great value of this work, I was, I believe, the only
person who ever read it—more than twenty years after its publication’.
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‘the sole possible foundations of arithmetic seem to vanish’ in the

contradiction from Basic Law V.

In fact, Russell held that once it is properly understood, Basic
Law V is correct as a definition of ‘extension’ or ‘class’. His diag-
nosis was that the derivation of the contradiction from Basic Law V
invokes a fallacy. Recall (from ch. 1, §2) that a definition of a math-
ematical entity is impredicative if it refers to a collection that con-

bound is 1mpred1cat1ve since it refers to a set of upper bounds and
characterizes a member of this set.

Russell (1919: ch. 17) argued that such definitions are illegitim-
ate, since they are circular:

Whenever, by statements about ‘all’ or ‘some’ of the values that a variable

can significantly take, we generate a new object, this new object must not
be among the values which our previous variable could take, since, if it
were, the totality of values over which the variable could range would be
definable only in terms of itself, and we should be involved in a vicious
circle. For example, if I say ‘Napoleon had all the qualities that make a
great general’, I must define ‘qualities” in such a way that it will not
include what I am now saying, i.e., ‘having all the qualities that make a
great general’ must not be itself a quality in the sense supposed.

The development of Russell's paradox runs foul of the ‘vicious

circle principle’. To generate the paradox, we defined a concept R
which ;mn]m to an nhmrr mcr in case there is a concent F such
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that x is the extension of F and Fx is false’. The definition of R refers
to all concepts F, and R is just such a concept F. Thus, the definition
of R is impredicative. We derive a contradiction from the assump-
tion that the definition of R holds of its own extension. The ban on
impredicative definitions precludes even making this assumption.

For now, let us put concepts aside and QnPa]( onlv of extensions,
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or classes. Russell argues, from the vicious circle principle, that it
‘must under all circumstances be meaningless (not false) to suppose
[that] a class [is] a member of itself or not a member of itself.
Thus, there can be no all-inclusive class that includes all of the

classes in the universe, since this domain would be a member of
itself. Nor can there be a class of all classes that do not contain

themselves as members. For Russell, it is meaningless to say (or even
assume) that there is such a class. He proposed a type theory, which
partitions the universe. Define an ‘individual’ to be an object that is
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not a class. Individuals are of type 0, and classes of individuals are
of type 1. Classes of classes of individuals are of type 2, and so on.
So, for example, the people that make up a baseball team are each
individuals and so are type 0 objects. The team, regarded as a class
of its players, is a type 1 object; and the league, regarded as a class
of teams, is of type 2. A collection of leagues would be of type 3.
The move to classes allows a simplification of Frege’s definitions

be the class of all those classes that are’ equmumerous W1th C (see
Russell 1919: ch. 2). Let A be the class of my three children; so that
A is of type 1. The number of A is the class of all three-membered
type 1 classes. The number of my children is thus a type 2 class.
Similarly, the number of a type 2 class is a type 3 class, and so on.
For Russell_a ‘number i hi hich is ¢l : )

class’. He defined the number zero to be the class of all type 1
classes that have no members. So zero is a type 2 class which has
exactly one member—the type 1 empty set. The number 1 is the
class of all type 1 classes that have a single member. The number 1
is also a type 2 object, and it has as many members as there are
mdmduals (1f this statement mixing types is allowed).® Continuing,
the number 2 is the class of all type 1 classes that have two mem-
bers. Thus, the number 2 is the class of all pairs of individuals. The
number 3 is the class of all triples of individuals, and so on. As
expected, the number of the aforementioned class A of my children

is 3.
Russell adapted another central Fregean definition to the context
with classes: ‘the successor of the number of . .. [a] class a is the

number of . . . the class consisting of @ together with x, where x is
[any individual] not belonging to [a]" (1919: ch. 3). So far, so good.
Recall that, for Frege, the number zero is the number of the

concent ‘not 1HPnﬁrcﬂ to itself. This conforms to Russell’s pro-
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gramme in which zero is a type 2 class. However, Frege’s presen-
tation of the other natural numbers, and his proof (via Hume’s
principle) that there are infinitely many natural numbers, violates
Russell’s type restrictions (and the vicious circle principle). Recall
that Frege nr(mnsed that the number 1 is the number of the concept
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® There are different natural numbers for each type. We might define 0' to be
the class of all type 2 classes that have no members, and 1' to be the class of all
type 2 classes with a single member, etc. So 0' and 1' are of type 3.
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‘identical with zero’. Using classes instead of concepts, the number

1 would be the number of the class whose only member is the
number zero. That is, Frege’s number 1 is the number of {0}. But
{0} is of type 3 and so the number of this class is of type 4. Notice
that even though the number 0 has a single member (i.e., the type 1
empty set), 0 is not a member of Russell’s number 1, since the latter
contains only type 1 classes—as per the type restrictions. Since the

a]l type 2 classes that have a single member (see note 8).

To help keep the types straight, let us temporarily define 13, the
Russell-1, to be the type 2 class consisting of all type 1 classes with a
single member; and define 1' to be the type 3 class consisting of all
type 2 classes that have a single member. So Russell’s number zero

two is the number of the concept ‘either 1dent1cal to zero or identi-
cal to one’. Transposing this to the present context (involving
classes instead of concepts), Frege’s number two would be the
number of the class {0,1}. Which number 1, 1, or 1'? It does not
work either way. For Russell, the class {0,1'} does not exist, since it

contains a type 2 class and a type 3 class.’ The class {0,1;} contains a
pair of type 2 classes and so it is of type 3. The number of {0,1;} is
thus of type 4. In general, Frege’s plan to define a number n as the
number of the predecessors of n: {0,1, ... n- 1} runs into trouble.
We either violate the type restrictions directly (if 0, 1, etc. are not

all of the same tvpe) or Plcp we produce a rl:\cc of the wrong tvpe
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For Russell, again, each number n is the type 2 class consisting of
all n-membered classes of (type 0) individuals—that is, all n-
membered classes of non-classes. He could not accept Frege's
proof that there are infinitely many natural numbers, for that
involved treating the natural numbers as if they were individuals.

* With some care, it is possible to consistently define classes of mixed type, such
as a class of players and teams. Contemporary Zermelo-Fraenkel set theory
allows mixed classes and so it has a class of all classes of finite type, and then
subclasses of that, etc. The resulting structure is sometimes called the ‘cumulative
hierarchy’. Allowing mixed types facilitates the extension of the type hierarchy
beyond finite types. In the cumulative hierarchy, there is no set of all sets that are
not members of themselves. There is no universal set, containing all sets as mem-
bers, and there is no set of all singletons. So the Fregean construction is blocked
there too.
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Frege’s theorem, including the poof that there are infinitely many
natural numbers, turns on this impredicativity.

For Russell, whether a given natural number exists depends on
how many individuals (i.e. non-classes) there are in the universe.
Suppose, for example, that the world contains exactly 612 indi-
viduals. Then Russell’s number 612 would be the class of all 612-
membered classes of individuals. There would be only one such

lass, the cl £ all individuals. To. foll he definition, 1! ]
cessor of 612 is the number of ‘the class consisting of the universe
‘together with x, where x is [any individual] not belonging to’ the
universe. Well, under the assumption about the size of the uni-
verse, there is no such x and so there is no successor of 612. The

numbers thply run out at 612—there is no number 613,

axiom of infinity, Whlch states that there are infinitely many md1-
viduals. Russell admits that this principle does not enjoy the epi-
stemic status of the other fundamental principles he employs (such
as the definitions). The axiom of infinity cannot be proved, nor is it
analytic, a priori, true of necessitv Nevprrhplecq it seems to be
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essential for arithmetic, so Russell accepts it as a postulate. The
existence of each natural number, and its successor, then follows.
The contrast with Frege is stark. Frege proved that each natural
number exists, but his proof is impredicative, violating the type
restrictions. Russell had to assume the existence of enough indi-

viduals for each natural number to exist. This nputs a damper on
t/“l.u
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logicism. If we go on to prove an arithmetic theorem @, all we can
say is that the statement

if there are infinitely many (type 0) individuals, then @

metic has an awkward, hypo-

With the axiom of infinity on board, the next step is to define the
general notion of natural number. Here again, Russell attempts to
transpose Frege’s proposal to the context of classes: n is a natural
number if n belongs to every (type 3) class whlch contains the
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s definition is impredicative, in
stralghtforward manner. The class of natural numbers is a type 3
class defined by referring to ‘every class’ of that type. To maintain

full compliance with the vicious circle principle, Russell (and
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Whitehead) insisted on further structure in the hierarchy of types.

A type 1 class is ‘predicative’, or of level 0, if it can be defined
without referring to classes. A type 1 class is of level 1 if it is not
predicative, but can be defined with reference to predicative classes
only. A type 1 class is of level 2 if it is not of level 1 but can be
defined with reference to level 1 classes only. There is a similar level

structure for every type. The overall theory is sometimes called
’ 10

et A = 2=

In the foregomg definition of ‘natural number’, the locution
‘every class’ would have to be restricted to a certain level in the
ramified hierarchy of type 2 classes. One should say that n is a type
2, level 1 natural number if n belongs to every predicative class
Which contains the number 0 and also contains a successor of each

‘ramified type rhpnry

every level 1 class Wthh contalns the number 0 and also contains a
successor of each of its members; and so on. However, we now
have no reason to think we get the same class of ‘natural numbers’
at each level. Russell and Whitehead realized that they could not
sufficiently develop mathematics with the level restrictions, since
some of the crucial definitions seem to require impredicative def-
initions. For example, Frege’s proof of the induction principle for
natural numbers from these definitions does not go through. When
formulated in Russell’s system, the induction principle is, or

appears to be, impredicative, and many important mathematical
dPVPlnnmPnN are 1mnr9d1rnr|v¢=
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In response to thlS difficulty, Russell and Whitehead proposed
another axiom, a principle of reducibility which states that at each
type, for every class c, there is a predicative (level 0) class ¢’ which
has the same members as c. The principle of reducibility states that
no new classes are generated beyond the first level. This allowed

ussell and Wh:rph ad to restrict the locution ‘all classes’ to ‘all
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predlcatlve classes’, and then proceed with the derivation of the
basic principles of arithmetic. The effect of the principle of reduci-
bility is to allow the logician to ignore the level-hierarchy and pro-
ceed as if impredicative definitions are acceptable and the vicious
circle is not really a problem. A nice deal, if you can get it.

' Whitehead and Russell 1910. See Hazen 1983 for a readable and sympathetic
development of ramified type theory. Russell used the word ‘order’ for what I call
‘level’ here. In the contemporary literature, a phrase like ‘second-order’ or
‘higher-order’ refers to something more like a type in Russell’s hierarchy.
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But what is the status of the principle of reducibility? Is it ana-

lyticz Knowable a priori? Is it even true? Critics charged that the
principle is ad hoc. Russell’s response was the same as for the axiom
of infinity He admitted that the reducibility principle does not
enjoy the same justification as the principles of logic, and he did not
provide a compelling argument for it. Yet he claimed that it is
essential for the development of mathematics, and so he proposed

in hlS logicism."

Using the principles of infinity and reducibility, Russell and
Whitehead established the standard Peano axioms for arithmetic,
and thus all of the usual theorems concerning the natural numbers.
They then extended the develonment to some more advanced

way. Let m be a natural number Russell (1919 h. 7) deﬁned the
integer + m to be the binary ‘relation of n + m to n (for any n)’ on
the natural numbers. Thus, for example, +4 is the relation that
holds of the following pairs: (4,0), (5,1), (6,2), ... Similarly, the
integer —m is the converse of + m, ‘the relation of nton+m, so
that —4 holds of (0,4), (1,5), (2,6), .... One can then deﬁne
addition and multiplication on these ‘integers’ so that the usual
properties hold.

It is widely thought, and widely taught, that the integers are an
extension of the natural numbers. We go from the natural numbers
to the intecers hv tackino on the neoative whole numbers. so that
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the natural number 2, for example, is identical to the integer +2.
Russell emphasized that on his definitions, the natural numbers and
the integers are distinct from each other. The natural number 2 is a
class of classes (i.e. a type 2 class) while the integer +2 is a relation
on natural numbers. It would violate the type restrictions to iden-

an this natural number with this ll’lngPT‘ ‘... 4+ mis under no
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circumstances capable of being identified with m, which is not a
relation, but a class of classes. Indeed, + m is every bit as distinct
from m as —m is’.

Next, the rational numbers are defined to be relations which

"' R P Ramsey (1925) proposed a ‘simple’ or impredicative type theory without
the restrictions on levels, but then presumably one needs to justify the violations to
the vicious circle principle. Ramsey adopted an ontological realism towards
classes, which obviates the need for a vicious circle principle. See ch. 1, §2 above.
We return to this briefly later in this chapter.
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capture ratios among integers: “We shall define the fraction m/n as
being that relation which holds between two [numbers] x,y when
xn =ym’. Thus, for example, the fraction 3/4 is the relation that
holds of the pairs: (3,4), (6,8), . . . Intuitively, the relation 3/4 holds
between x and y just in case the fraction x/y reduces to 3/4. Notice
also that the rational number m/1 is not the same relation as the
integer + m. So the rational number 2 is different from the integer

relatlon and the operations of add1t10n and multlphcatlon on these
rational numbers, to recapture the arithmetic of the rational
numbers.

For the real numbers, Russell follows another logicist, Richard
Dedekind (1872). Define a ‘section’ to be a non-empty class ¢ of

onal h that (1) for all rational : yoifxis i |if
y < x then y is in ¢; (2) there is a rational number z such that for
every rational number x if x is in ¢, then x < z; and (3) for every
rational number x if x is in ¢ then there is a rational number y in ¢

such that x <y. In other words, a section is a connected, bounded
class of rational numbers that has no ]groeqr member The sections

correspond to what are called Dedekmd cuts’ in the rational num-
bers. Russell identified the real numbers with the sections. The real
number 2 is the class of rationals less than 2 (i.e. 2/1), and the
square root of 2 is the class of all negative rational numbers

together with the non-negative rationals whose square is less than

2. One can define the nrﬂpr relation on the real nnmhpre and the

AL WAL IALAL VAL VAWML A L VAR CAUIL Vil VLV A8l liwiiiUva T,y Qiive Ll

addition and multiplication operations, and then show that the real
numbers are a complete ordered field. In particular, one can estab-
lish the completeness principle that every bounded class of real
numbers has a least upper bound.

Notice that on this definition, real numbers are classes of rational
numbers. The axiom of reducibility—or the use of impredicative

definitions—thus plays a large role in the Russell’s development of
real analysis. It becomes impossible to keep the levels straight. For
example, it will not do to have a level 0 square root of 2, a level 1
square root of 2, and so on. For real analysis, Russell also needed an

axiom of choice Statip

QHasiza A vaalvav o

o that for anv collection ¢ of non-emntv
1g th 1y collection ¢ of non-em pry

ich share a member, there is at least o
containing exactly one member of each member of ¢ (Russell 1919:
ch. 12; see Moore 1982 for a full development of the role of choice

principles in the development of mathematics). Like infinity and
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reducibility, this axiom can be formulated using logical termin-

ology, but perhaps not established from logical principles alone.
Finally, Russell defined a complex number to be an ordered pair
of real numbers. So the complex number 3 — 2i is identified with
the ordered pair whose first member is the real number 3 and
whose second member is the real number — 2.
This more or less completes the development of Russell’s logi-

is thlS subject, Wl’llCl'l may be called indifferently e1ther mathematlcs
or logic? ... Certain characteristics of the subject are clear. To
begin with, we do not, in this subject, deal with particular things or
particular properties: we deal formally with what can be said about
any thing or any property.”’ Logic is completely general, and uni-

To the extent that geometry concerns physical space, it falls outside
the scope of Russell’s logicism. However, one can consider a ‘pure’
version of geometry, which consists of pursuing the consequences of

various axiom systems. This much can be fitted into the logicist
framework. with the advent of model rhenrv and the t‘lO‘ﬂT‘(‘)l]Q
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notion of logical consequence. With the pmnaples of 1nﬁmty, redu-
cibility, and choice, Whitehead and Russell’s type theory captures
just about every branch of pure mathematics short of set theory.
But what is mathematics about? What are numbers, function, and
so on really? Since Russell took the various sorts of numbers to be

Cl cepQ rplaﬁnnc on clasces rplntinne on relations on classes and so
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on, the status of numbers turns on the status of classes. His mature
writings deny the independent existence of classes. In Introduction
to Mathematical Philosophy (1919: ch. 18) he wrote that ‘the symbols
for classes are mere conveniences, not representing objects called
“classes” ... [Cllasses are in fact ... logical fictions ... [They]

nnnt he reoarded ac orf OF ‘_hp

Russell indicated (or trled to indicate) how to paraphrase any state-
ment about classes as a statement about concepts and properties
(what he called ‘propositional functions’). The end result is what he

called the ‘no class’ theory. Talk of classes is only a ‘manner of
speaking’, and is eliminable in practice."

"> Here the axiom of reducibility plays an even larger role, since a single para-
phrase might require one to speak at once of all concepts in the entire type
hierarchy. Russell sometimes speaks of a ‘systematic ambiguity’, where the same

sentence is used to express different propositions about each type and/or level.
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Since Russell’s numbers are classes (or constructed from classes),

they are also logical fictions, and so not part of the “ultimate furni-
ture of the world’. So at this period, Russell sharply departed from
Frege’s realism in ontology. During his mature ‘no class’ period, he
held that any statement in any branch of (pure) mathematics could
be properly rewritten as a complex statement about properties and

concepts, with no reference to numbers, functions, points, classes,
and so on.

We now consider a school of empiricism that flourished in the
early and middle decades of the twentieth century. Logical positiv-
ism took off from the spectacular success of the natural sciences
and the growth of mathematical logic. As noted earlier, math-
ematics is a difficult case for empiricism. In the previous chapter
we considered Mill's view that the truths of mathematics are
themselves known empirically, by generalizations on experience.
Accordingly, mathematics is synthetic and a posteriori. In contrast,
the logical positivists were attracted to the logicist thesis that the

truths of mathematics are analytic, and so a priori. As we have
seen alregdv these notions mean different rhmcre to different

authors. We encounter a further evolution of the notion of
analyticity.

As noted at the outset of this chapter, Coffa (1991) suggested that
much of nineteenth-century philosophy was occupied with

attempts to account for the (at least apparent) necessity and a priori
nature of mathematics and logic unrhnnr invokino Kantian intu-
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ition. Coffa suggested that the most fruitful anti-Kantian line was
what he calls the ‘semantic tradition’, running through the work of
Bernard Bolzano, the early Ludwig Wittgenstein, Frege, and David
Hilbert, culminating with Moritz Schlick and Rudolf Carnap in the
Vienna Circle. These philosophers developed and honed many of

the tools and concepts still in use today, both in mathematical loglc

and in western philosophy generally. The main insight was to locate
the source of necessity and a priori knowledge in the use of lan-
guage. Necessary truth is truth by definition; a priori knowledge is
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knowledge of language use. Michael Dummett calls the approach

the linguistic turn in philosophy."

In the present context, the thesis is that once we understand the
meanings of terms like ‘natural number’, ‘successor function’, ‘add-
ition’, and ‘multiplication’, we would thereby have the resources to
see that the basic principles of arithmetic, such as the induction
principle, are true. This is at least in the spirit of logicism, even if,

true on logical grounds alone.

Of the two main logicists considered above, Frege held that the
numbers exist, of necessity, independent of the mathematician, and
Russell held that numbers do not exist (at least during his no-class
period), One might think that this exhausts the options, but as an

existence of numbers troubling. How can that issue be decided by
observation? Carnap rejected the sense of the very debate over the
existence of mathematical objects.
On one level, the ontological question h s a trivial, affirmative
1iswer. “There are numbers’ is a logical consequence of ‘there are

pnme numbers greater than 10 If we accept the latter, as surely
we must if we take mathematics and science seriously, then we
accept the former: a tidy end to a 2,000-year-old struggle. Frege and
Plato win; Russell, Mill, and perhaps Aristotle lose.

Of course, the ontological anti-realist would not be moved by
this simple logical mfprpnrp and manv ontological realists agree
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that the issue is not that simple."* So What is the tradmonal dlspute
about? Carnap (1950: §2) suggested that the parties ‘might try to
explain what they mean by saying that it is a question of the onto-
logical status of numbers; the question whether or not numbers
have a certain metaphysical characteristic called reality . . . or sub-

sistence oOr status nF 1nr]phpnﬂpnr entities”’. Carnap rnmh]mnpd
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" Dummett locates the ‘linguistic turn’ with Frege, but this is controversial.
Although Frege was clearly a pivotal figure in the eventual development of the
serantic tradition, he did not hold that all necessary truth is truth by definition.
Recall that, for Frege, the truths of geometry are synthetic, a priori (see §1 above),
and so not true by definition. For Frege, analytic truths are derivable from ‘general
logical laws and definitions’. Thus, the status of Fregean analytic truths turns on
the nature of ‘general logical laws’, but Frege did not say much about these (see
note 2 above).

" See Hale 1987: 5-10, for a lucid discussion of this matter.
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that ‘these philosophers have so far not given a formulation of their
question in terms of the common scientific language. Therefore
our judgement must be that they have not succeeded in giving to
the [ontological] question ... any cognitive content. Unless and
until they supply a clear cognitive interpretation, we are justified in
our suspicion that their question is a pseudo-question . .. We see
here a tendency toward naturalism, common among empiricists
perhaps the only, line on truth and so any meaningful question
must be cast in scientific terms. The ontological question is not
‘theoretical’ or scientific, and so it is meaningless.

What of the trivial, affirmative answer, deriving the existence of
numbers from the proof that there are prime numbers greater than

Are there properties, classes, numbers, propositions? In order to under-
stand more clearly the nature of these and related problems, it is above all
necessary to recognize a fundamental distinction between two kinds of
questions concerning the existence or reality of entities. If someone
wishes to speak in his language about a new kind of entities, he has to
introduce a system of new ways of speaking, subject to new rules; we
shall call this procedure the construction of a linguistic framework for the
new entities in question. And now we must distinguish two kinds of
questions of existence: first, questions of existence of certain entities of
the new kind within the framework; we call them internal questions: and
second, questions concerning the existence or reality of the system of
entities as a whole, called external questions. Internal questions and possible
answers to them are formulated with the help of new forms of expres-
sions. The answers may be found either by purely logical methods or by
empirical methods, depending upon whether the framework is a logical or
a factual one. An external question is of a problematic character in need
of closer examination. (Carnap 1950: §2)

A ‘linguistic framework’ is an attempt formally to delineate a
part of discourse. The framework should contain a precise gram-
mar, indicating which expressions are legitimate sentences in the

framework, and it should contain rules for the use of the sentences.
Qs ~L tlhhn wirlan samncr o ssvnsmtosmnal  den Al mntie Lo AwvA s lant
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one can assert such and such a sentence when one has a certain

kind of experience. Other rules will be logical, indicating what
inferences are allowed and which sentences can be asserted no
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matter what experience one has. Carnap calls the latter analytic

truths.

Elsewhere, Carnap presented a logicist system much like
Russell’s (see, for example, Carnap 1931), but with one important
difference. Russell took his task to be a philosophical analysis of
the nature of propositions, concepts, classes, and numbers (see
Goldfarb 1989), and so he insisted on the vicious circle Drinciple,

result was an unw1eldy ramlﬁed type theory thh the ad hoc axiom
of reducibility. Carnap, on the other hand, regarded his system as a
linguistic framework—one among many. In developing a frame-
work, one is free to stipulate the rules of the system, the only
requirement being that the rules are clear and explicit. Carnap thus

the pr1nc1ple of reducibility altogether (see note 11 above)
Carnap (1950) briefly sketches a linguistic framework called ‘the
system of numbers’. Its grammar includes numerals, variables,

quantifiers such as ‘there is a number x such that . . .’, and signs for
the arithmetic operations Carnap indicates that this ﬁ*gmewnrk
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contains ‘the customary deductxve rules’ for arithmetic. This
framework seems to be a formal deductive system, like those
developed in mathematical logic.

Define a number framework to be a system like Carnap’s earlier
logicist system or his later ‘system of numbers’. With regard to any

rh svstem there are first nF a” ‘internal questions e.o.. “Is there
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pnrne number greater than a hundred?” ... [TThe answers are
found, not by empirical investigations based on observations, but
by logical analysis based on the rules for the new expressions.
Therefore, the answers are here analytic, i.e., logically true’ (Carnap

1950: 823 The existence of a pnme greater than a hundred is an
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the given number framework The existence of numbers is an
utterly trivial consequence of those rules and definitions. It follows
from the stipulations that 1 is a number. “Therefore, nobody who
meant the question “Are there numbers?” in the internal sense

would either assert or seriously consider a negative answer’.
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the reality of the numbers is meaningless. The closest thing to a
legitimate question is the advisability of adopting a given number
framework, but this is a pragmatic matter, not calling for an absolute
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‘yes’ or ‘no’ answer. We—the members of the intellectual/scientific

community—are free to choose to adopt a framework, or not,
based on how it furthers the goals we take on. The overall goal of
the scientific enterprise is to describe and predict experience, and to
control the physical world. Mathematics seems to be part of this
scientific enterprise. The pragmatic question is whether one of
Carnap’s number frameworks serves the purposes of science better

theory.
Carnap adopted and defended a principle of tolerance. Let a
thousand flowers try to bloom, even if not all of them do:
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ence, will finally be decided by their efficiency as instruments, the ratio of

the results achieved to the amount of effort and complexity of the efforts
required . . . Let us grant to those who work in any special field of investi-
gation the freedom to use any form of expression which seems useful to
them; the work in the field will sooner or later lead to the elimination of
those forms which have no useful function. Let us be cautious in making
assertions and critical in examining them, but tolerant in permitting linguistic

forms. (Carnap 1950: §5)

In chapter 1, §2 above, we saw that Godel defended impredica-
tive definitions on the grounds of ontological realism. So did

Ramsey (see note 11 above). From that perspective, an impredica-
tive deﬁ nition is a deecnnnnn of an existin ng entity with reference to

other existing entities. But this requires a positive answer to the
original external question about the existence of numbers, and so it
goes by way of metaphysics. According to Godel and Ramsey,
impredicative definitions are acceptable because numbers and classes
have an independent existence. In contrast, Carnap defended

imnredicative definitions on bpragmatic grounds. His number
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framework is far more convenient than ramified type theory for the
scientific purposes at hand. No further justification is required, or
even coherent. Delving into the metaphysical status of properties,
concepts, or numbers produces only pseudo-questions.

Unlike Mill, Carnap and the other logical positivists held that th
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ematical truths are a priori, holding no matter what experience we
may have. As empiricists, however, they held that every factual
matter must ultimately be decided by experience. So the logical
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positivists concluded that mathematical truths have no factual con-

tent. For Carnap, the truths about the natural numbers may be
called ‘framework principles’ since they emerge from the rules for
using a number framework.

A later member of the school, Alfred J. Ayer (1946: ch. 4), put it
clearly:

For whereas a scientific generalization is readily admitted to be fallible, the

truths of mathematics and logic appear to everyone to be necessary and
certain. But if empiricism is correct no proposition which has a factual
content can be necessary or certain. Accordingly the empiricist must deal
with the truths of mathematics and logic in one of the two followmg
ways: né must say eitner that they are not necess ary tr ruths . . . or he must

say that tney have no factual content, and then he must explam how a

proposition which is empty of all factual content can be true and useful
and surprising.

Ayer wrote that, contra Mill, mathematical truths are necessary, but
he added that they do not say anything about the way the world is.
We ‘cannot abandon [the truths of logic and mathematics] without
contradicting ourselves, without sinning against the rules which
govern the use of language’. For Carnap, the ‘rules which govern
the use of language’ are found in the various linguistic frameworks.

The logical positivists thus eliminated the very possibility of syn-
thetic propositions that are knowable a priori. As Ayer put it, a
proposition is synthetic, or has factual content, only if its rrnrh or
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falsehood ‘is determmed by the facts of experience’. A proposition
is analytic ‘when its validity depends solely on the definitions of the
symbols it contains’. For Ayer, this exhausts the cases. He added
that although analytic propositions ‘give us no information about

any empirical situation, they do enlighten us by illustrating the way
in whlrh we use certain symbols’
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The logical positivists brought geometry into the fold. The
axioms of, say, Euclidean geometry are ‘simply definitions’ of
primitive terms like ‘point” and ‘line’. Ayer wrote: ‘if what appears
to be a Euclidean triangle is found by measurement not to have
angles t ota]mg 180 degrees, we do not say we have met with an

b
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sum of the three angles of a Euclidean triangle is 180 degrees. We
say that we have measured wrongly, or, more probably, that the
triangle we have been measuring is not Euclidean.” Euclidean
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geometry, construed as a theory of pure mathematics, is a linguistic

framework a la Carnap. The indicated theorem about the angles
in a triangle is a framework principle, and so is analytic, knowable
a priori. It is true by definition. There is a separate pragmatic
or scientific issue concerning the advisability of adopting this
framework, rather than one of the non-Euclidean geometries, for
physics. This last is not a mathematical question.

mcluded the other members of the so- called Vienna CII‘CIC such
as Moritz Schlick, Gustav Bergmann, Herbert Feigl, Otto Neurath,
and Friedrich Waismann. Outside Vienna, there is C. W. Morris,
and Ernest Nagel. That movement had pretty much run its course
by the 1960s, if not before, but the Dosition on mathematies was

positivism shared the problem with tradmonal (radlcal) emp1r1c1sm
of describing the basis of knowledge. Can we distinguish observa-
tion from theory, and can we sharply distinguish mathematics from
the rest of scientific theory? The success of mathematical logic led
the nnmnvmts to attempt a logic of confirmation. that would relate
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empmcal observation to sc1ent1fic and mathematical theory. Yet no
compelling confirmation-logic was forthcoming. These failures led
to difficulty in formulating the central thesis that every factual
(non-analytic) statement is verifiable. What exactly is it to be verifi-
able? The verifiability thesis proved untenable, even on ever-weaker

notions of verification

LANS VAT AAS Vi VoRidlANARLiUix.

Some critics pointed out that the very statement of logical posi-
tivism undermines the view. Consider, for example, the proposition
that every meaningful statement is either analytic or verifiable (in
some sense) through experlence Apparently, this proposmon is not

verification b y experience, in any sense of the term. Thus loglcal
positivism seems to brand itself as a banned metaphysical doctrine.
Many of Carnap’s own philosophical statements, needed to outline
the programme, do not seem to be made within a fixed linguistic

framework. Indeed, his statements are about linguistic frameworks,
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nap’s own work into meaningless ‘pseudo-statements’?
One influential attack against logical positivism came from Car-
nap’s most influential student, Quine, who argued that there is no
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distinction between analytic and synthetic statements, or at least no

distinction that serves the purposes of logical positivism. According
to Quine, there is no sharp distinction between the role of language
and the role of the world in determining the truth or falsehood of
meaningful statements. Quine proposed a holistic approach to sci-
entific language, with observation, theory, and mathematical
statements inextricably linked to each other. He shared the basic

Qume shared a ba51c mistrust of much trad1t1onal metaphy31cs He
developed a naturalism and an empiricism closer to that of Mill in
important ways. Mathematical truths are true in the same way that
scientific truths and reports of observation are true. These truths
are not necessary and not known a priori. We return to Quine in

chanter 8 X’)
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The the31s that mathematical propositions are true or false by
virtue of the meaning of mathematical terminology cannot be
fully adjudicated without an extended discussion of what ‘meaning’

is. Note, however, that one main promise of the thesis is an account
of how mathematics is known. Accnrr‘]mo to the ln ical positivists
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knowledge of the correct use of mathematlcal language is sufﬁclent
for knowledge of mathematical propositions, such as the induction
axiom, the prime number theorem, and even Fermat’s last the-
orem. For Carnap, once we learn the rules of a given linguistic
framework, such as the number framework or Euclidean geometry,

we have evervthing we need for knowledge of the requisite math-
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ematical propositions. This suggests that, eplstem1ca11y, mathemat-
ical propositions can be sharply divided into self-contained groups.
Each proposition p is associated with its framework P. Knowledge
of the rules of P is just about all there is to knowledge of the truth
or falsehood of p.

Nevelanmentce in mathamat
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ematical logic, cast doubt on this promising epistemic thesis.
Godel’s incompleteness theorem is that if D is an effective deduct-
ive system that contains a certain amount of arithmetic, there are
sentences in the language of D which are not decided by the rules

.
-
o
N

of D (see, for exg_mplp Boolos and Ipﬁ'rpv 1989: ch. 15). The truth-
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natural numbers in a richer structure, such as the real numbers or
the set-theoretic hierarchy That is, some statements in the lan-
guage of arithmetic are not knowable on the basis of the rules of a
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natural number framework alone. The situation is typical in math-

ematics. Suppose, for example, that a mathematician is interested in
a certain mathematical statement s about a certain structure S.
According to Carnap, if s is true (of S), then s is analytic and owes
its truth to the linguistic framework of the structure S. However,
the mathematician will commonly invoke structures far richer than
S in order to prove or refute s. That is, the mathematician considers

No nch mathematlcal theory is as self- contamed as Carnap s
(mathematical) linguistic frameworks are supposed to be."’

The recent proof of Fermat’s last theorem is a case in point.
Anyone with a basic understanding of the terms can understand the
statement that for any natural numbers

a>0,b>0,c>0,n>2,a"+b"#".

Yet the proof eludes the grasp of all but the most sophisticated
mathematicians, since it invokes concepts and structures far beyond
1is case at least,
functlon ddlthl’l , multlphcatlon and ‘exponentiation” without
having the wherewithal to see that Fermat’s last theorem is true.
There may be a ‘self-contained” proof of this theorem—that is, a
proof that does not go beyond the properties of the natural num-
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bers. Perhaps Fermat himself discovered such a proof, but con-
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theorem via that route.

the natural numbers.
One retreat would be for the logical positivist to concede that

only some truths of, say, arithmetic, are analytic, or otherwise
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evertheless, the heorem is clearly about
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someone can maintain that a basic core of arithmetic
analytic. What of the other, non-core propositions? Are those syn-
thetic? If so, are they somehow verifiable in observation?

Another option would be for the logical positivist to maintain
the thesis that mathematical statements are true by virtue of their
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" In the next chapter we will see this ‘incompleteness’ phenomenon under-
mine another once prominent philosophy of mathematics, formalism.
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resources to know that it is true. The idea is that when we embed

the natural numbers in a richer structure, we can thereby learn
more about what follows from the meaning of the original mathemat-
ical terminology. The logical positivist thus needs a rich and open-
ended notion of logical consequence and he needs to explicate this
notion of consequence before claiming an understanding of math-
ematical knowledge. Until this notion of consequence is supplied

the eplstemology of mathematlcs

4. Contemporary Views

Variations of Frege’s approach to mathematics are vigorously pur-
sued today, in the work of Crispin Wright, beginning with Frege’s
Conception of Numbers as Objects (1983), and others like Bob Hale
(1987) and Neil Tennant (1997). Define a neo-logicist to be some-
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of mathematical truths are knowable a priori, by derivation from
rules which are (all but) analytic or meaning-constitutive; and (2)
this mathematics concerns an ideal realm of objects which are

objective or mind-independent in some sense.’ ThlS combination

is attractive to those sympqrhetw tot

ng N I-\I\A\"r r\c

quu&tiCS as a oGqay Oi I.‘u iori, objective truth
about the standard eplstemologlcal problems faced by realism in
ontology. How can we know anything about a realm of causally
inert, abstract objects? The neo-logicist answers: by virtue of our
knowledge of what we mean when we use mathematical

language—and so she attempts to resolve the problems found in

f«nr’l;f:nﬂn1 11‘\1‘\':’- orve '-'-‘Lz: v\nr\_l/\n:n:nf- o ““ALA“\I"v C—Ln nlr\nnno- ~ONTS o

Ll aulitivilal 1U51uo X. 11C 1CV IUSILIDL 19 PlUUdUl)’ LIICT CL1UDOODL Lull
>

temporary heir of Coffa’s ‘semantic tradition

Recall that two concepts F, G, are equmumerous if there is a
one-to-one correspondence between the objects falling under F and
the objects falling under G. For example, if no red cards have been

issued in a soccer match, the players on one team are equinu-
e maam o wmmrmal ol o Vb Lo IR ISR I
IIICTOuS 11N Wi pldycrs oIl e OtNcer tedl r'I'CgC SOwed Now U

' Frege himself clearly held the second of these theses. See note 13 above on
the extent to which Frege held something like the first thesis.
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define equinumerosity using logical resources without explicitly
presupposing the natural numbers. Recall his (1884: §63) formula-
tion of the thesis now known as ‘Hume’s principle”:

For any concepts F, G, the number of F is identical to the number
of G if and only if F and G are equinumerous.

The neo-logicist programme is to bypass Frege’s treatment of

d1rectly A number of authors mcludmg nght have pomted out
that Frege’s development of arithmetic (1884, 1893) contains the
essentials of a derivation of the standard axioms of arithmetic from
Hume’s principle (in so-called ‘second-order logic’—see Shapiro
1991). Moreover, Hume’s principle is consistent if (second-order)
stantial use of extensions, and the ill-fated Basic Law V, was to
derive Hume’s principle. See, for example, Parsons 1965, Wright
1983, Hodes 1984, and Boolos 1987.

As noted above, the derivation of arithmetic from Hume’s
principle is now called Freoe’s theorem. No one doubts that it is a
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substantxal mathematical achlevement, illuminating the natural
numbers and their foundation. The neo-logicist argues that
Frege’s theorem supports the aforementioned philosophical theses
concerning the natural numbers.

The principle idea is that the right-han

gives fhp rruth conditions for rhp left-hand side
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side has the proper grammatical and logical form. In particular,
locutions like ‘the number of F' are genuine singular terms, the
grammatical forms used to denote objects. At least some instances
of the right-hand side of Hume s pr1nc1ple are true, on logical

tical to itself’. Thus, from Hume’s principle, we conclude that the
number of non-self-identical things is identical to the number of
non-self-identical things. Letting ‘0" denote the number of non-self-
identical things, we conclude that 0 = 0 and so zero exists.

S

Following Frege, the neo-logicist then defines the number 1 to
ha tha mriismmbhor Af tha ~nmcant Tdantiral ¢4 2orn’ Aofinoc tha ni1mn
UC LT 1HIUINIUCL Ul Wit LO1ILepl ddcliuital LU 4010, Jcll nes tneé nuin-

S
ber 2 as the number of the concept ‘either identical to zero or
identical to one’, and on from there in Fregean fashion. It follows
from Hume’s principle that these natural numbers are different
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from each other, and so Hume’s principle cannot be satisfied in a
finite domain.

Like Frege’s own development, the neo-logicist requires that
Hume’s principle be impredicative, in the sense that the variable F in
the locution ‘the number of F' can be instantiated with concepts
that themselves are defined in terms of numbers. Without this
feature, the very deﬁnition of the individual numbers would fail,

Hume s principle. This impredicativity is consonant Wlth the onto-

logical realism shared by Frege and his neo-logicist followers (see
Wright 1998).

anht and Hal top shor

S

of clalmlng that Hume's principle is
rms, a ‘general logical law’. Hume’s
derivable from accepted logical laws. Wright and Hale also do not
claim that Hume's principle is a definition of cardinal number. It is
generally agreed that a definition of a term must be eliminable in

the sense that any formula containing the defined term is equiva-
lent to a Fnrmn]s\ not containine it. It follows from Hume’s prin-
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ciple that there is something that is the number of non-self- 1dent1cal
things, in symbols dx(x = 0). Hume’s principle does not provide for
an equivalent sentence lacking the number terminology. A success-
ful definition should also be non-creative in the sense that it has no
consequences for the rest of the language and theory. I—Iume s prin-
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is infinite. So Hume’s principle is neither eliminative nor non-
creative.

Thus, Wright and Hale do not defend the traditional logicist
thesis that arithmetic truth is a species of logical truth, or that each

arithmetic truth foll()we from general logical laws and deﬁmtlo
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Hume’s principle is ‘analytic o the concept of natural number.
Thus, the programme preserves the necessity of at least the basic
arithmetic truths and it shows how these truths can be known a
priori. In a later work, Wright (1997: 210-11) wrote:

=
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metic can be derived within a system of second-order logic augmented by
a principle whose role is to explain, if not exactly to define, the general
notion of identity of cardinal number, and that this explanation proceeds
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in terms of a notion which can be defined in terms of second-order logic.
If such an explanatory principle . . . can be regarded as analytic, then that
should suffice ... to demonstrate the analyticity of arithmetic. Even if
that term is found troubling, . . . it will remain that Hume’s principle—like
any principle serving implicitly to define a certain concept—will be avail-
able without significant epistemological presupposition . . . So one clear a
priori route into a recognition of the truth of . . . the fundamental laws of
ciple] may be viewed as a complete explanation—as showing how the con-
cept of cardinal number may be fully understood on a purely logical
basis—then arithmetic will have been shown up by Hume’s principle . . .
as transcending logic only to the extent that it makes use of a logical
abstraction principle—one [that] deploys only logical notions. So . . . there

understandmg and grasp of the truth of the fundamental laws of arith-
metic. Such an epistemological route . . . would be an outcome still worth
describing as logicism . . .

The key claim here is that Hume’s principle does not have signifi-
cant epistemological presuppositions. It is essential to the project
that when attempting to establish a basic arithmetic truth, we need
not invoke Kantian intuition, empirical fruitfulness, and so on.
Like the original Fregean logicism, the neo-logicist programme
has a chance at success only if second-order logic is in fact logic. If
substantial mathematics is nlreadv built into the logic, then as fnr as
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traditional logicism goes, Frege’s theorem begs the question. What
matters for neo-logicism is whether the axioms and rules of
second-order logic are analytic, or meaning-constitutive in the
requisite sense, or are otherwise free of substantial epistemological
presuooosmons The status of second-order logic is an ongoing

e in contemnorarv nhilosonhv. r)n‘np (1026 rh §\ for pYamh]P
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clalms that second-order logic is set- theory in dlsgulse, a wolf in
sheep’s clothing’. For a sample of the debate, see Boolos 1975, 1984,
Tharp 1975, Wagner 1987, and Shapiro 1991. This reiterates the
pomt at the end of the previous section that the underlying logical
principles must be made explicit and thetr epistemic status clearly
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gramme. Lacking an examination of the logic, it is not clear what
has been accomplished.
As we saw, Frege himself demurred from taking Hume’s prin-
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ciple as the ultimate foundation for arithmetic because Hume’s

principle only determines identities of the form ‘the number of
F = the number of G'. That is, Hume’s principle does not deter-
mine the truth value of sentences in the form ‘the number of F =
t’, where t is an arbitrary singular term. The neo-logicist does not
adopt Frege’s resolution involving extensions, nor does he follow
Russell in rejecting the exjstence of numbers (nor Carnap in reject-

active and open issue on the neo- log1C1st agenda That is, the neo-
logicist seeks to do what Hume’s principle alone does not, to settle
the identity between terms denoting natural numbers and other
singular terms (see Hale 1994 and Sullivan and Potter 1997).
Hume’s principle is an abstraction—from the relation of equinu-

abstractlon principles of th orm:

(ABS) @a = @§p if and only if E(a,p),

where E(a,B) is a special kind of relation, called an ‘equivalence’,
and /A i 2 new fiinctinn cymhanl ey that ‘N’ and {//-v\R, ro
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singular terms.'” Frege invokes two other abstraction principles,
both in the form (ABS). One is at least relatively innocuous: the
direction of 1 is identical to the direction of I’ if and only if [ is

parallel to I. The other example is his infamous, and inconsistent,
Basic Law V:

For any concepts F, G, the extension of F is identical to the exten-
sion of G if and only if for every object a, Fa if and only if Ga,

introduced as part of the theory of extensions.

The neo-logicist programme depends on the legitimacy of at
least some abstraction Pui‘iCip}f‘:S Wugut concedes that his own
proposals hinge on the proviso that ‘concept-formation by abstrac-
tion” be accepted. George Boolos (e.g., 1997) argued against
‘concept-formation by abstraction’ as a legitimate manoeuvre for a
prospective logicist. The most prevalent of his arguments is the
‘bad company objection’ Boolos proposes that there is no non-ad

l]OC way to QlS[lIlgUlSIl gOO(l abstraction pI'lIlClplCS U.KC Hume’s

"7 The relation E is an equivalence if (1) for every a, E(a,a) (reflexivity), (2) for
every a,f, if E(a,B) then E(B,a) (symmetry), and (3) for every a.B,y, if E(a,f) and
E(B.Y), then E(a,y) (transitivity).
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principle, from bad ones like Basic Law V. To be sure, Hume’s
principle is consistent while Basic Law V is not, but that distinction
is too coarse-grained. Hume’s principle is an ‘axiom of infinity’ in
the sense that it is satisfiable only in infinite domains. Boolos points
out that there are consistent abstraction principles, with the same
form (ABS) as Hume’s principle (and Basic Law V) that are satisfi-
able only in finite domains. If Hume’s Dn’ncinle is acceptable. then

w1th Hume’s pr1nc1ple How then to d1st1ngulsh the legmmate
abstraction principles? Wright's (1997) response is to delimit and
defend certain conservation principles which rule out the bad
abstraction principles and allow the good ones, Hume’s principle in
particular. The debate continues, but perhaps with less intensity

The neo-logicist project, as developed thus far, only applies to
the natural numbers and basic arithmetic. As significant as this may
be, arithmetic is only a small part of mathematics. Another major

item on the neo-logicist agenda is to extend the treatment to cover
other areas of marhpmgnrc like real analvsis. functional analvsis
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and perhaps geometry and set theory. The programme 1nvolves the
search for abstraction principles rich enough to characterize more
powerful mathematical theories. See Wright 1997: 233-44 and Hale
2000 for attempts in this direction.

In sum, then, logicism is not dead. It is an active

and potentially

H:n] onocoino rpcparrh nrooramme in the nhiloecanhy of
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mathemancs.

5. Further Reading

Many of the primary sources cited above are readable and readily
available. Frege 1884 has been translated into English (by J. L.
Austin), and Russell 1919 was republished in 1993 as a Dover
paperback. Ayer 1946 remains a classic work. The Benacerraf and

y €O ntains much of the origina
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and 1950, and selections from Frege 1884 (with different trans-
latlon), Russell 1919, and Ayer 1946 (and a related piece, Hempel

1945). Resnik 1980 and Dummett 1991 are lucid, important second-

ism (in Englis L
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ary sources on Fregean logicism. See also the papers collected in

Demopoulos 1995 and the second part of Boolos 1998. Several of
the papers in Heck 1997 deal with neo-logicism, and the topic
frequently appears in Philosophia Mathematica. For different logicist
approaches see Dedekind 1872, 1888 (published together in transla-
tion as a Dover paperback) and Hodes 1984.




