
9 Epilogue on Future, Science, and Ethics

The principles of complex systems suggest that the physical, social, and mental
world is nonlinear, complex, random. This essential result of epistemology has im-
portant consequences for our present and future behavior. Science and technology
will have a crucial impact on future developments. Thus this book finishes with an
outlook on future, science, and ethics in a nonlinear, complex, and random world.
What can we know about its future? What should we do?

9.1 Complexity, Forecasts, and the Future

In ancient times the ability to predict the future seemed to be a mysterious power
of prophets, priests and astrologists. In the oracle of Delphi, for example, the seer
Pythia (6th century B.C.) revealed the destiny of kings and heroes in a state of trance
(Fig. 9.1) In modern times people came to believe in the unbounded capabilities of
Laplace’s demon: Forecasting in a linear and conservative world without friction
and irreversibility would be perfect. We only need to know the exact initial condi-
tions and equations of motion of a process in order to predict the future events by
solving the equations for future times. Philosophers of science have tried to analyze
the logical conditions of forecasting in the natural and social sciences [9.1]. Belief in
man’s forecasting power has been shaken over the course of this century by several
scientific developments. Quantum theory teaches us that, in general, we can only
make predictions in terms of probabilities (cf. Sect. 2.3). A wide class of phenom-
ena is governed by deterministic chaos: Although their motions obey the laws of
Newtonian physics, their trajectories depend sensitively on their initial conditions
and thereby exclude predictions in the long run. In dissipative systems, such as the
fluid layer of a Bénard experiment (Fig. 2.20), the emergence of order depends on
microscopically small initial fluctuations. A tiny event, such as the stroke of a but-
terfly’s wing, can, in principle, influence the global dynamics of weather. In chaotic
systems, the prediction of future events is restricted, because the information flow
from past to future decreases: The Kolmogorov–Sinai entropy has a finite value.
But, in the case of random and noise, every correlation of past and future decays
and the Kolmogorov-Sinai entropy is running to infinity: No prediction is possible.
Obviously, the randomness of human fate was the challenge of ancient prophets,
priests, and astrologists. In Chap. 7 we have learnt that patterns and relationships
in economics, business, and society sometimes change dramatically. Going beyond
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Fig. 9.1. Aigeas, king of Athens, asking the Oracle at Delphi about his future (Greek bowl:
440–430 B.C.)

the natural sciences, people’s actions, which are observed in the social sciences, can
and do influence future events. A forecast can, therefore, become a self-fulfilling or
self-defeating prophecy that itself changes established patterns or relationships of
the past. Is forecasting nothing more than staring into a crystal ball?

But nearly all our decisions are related to future events and require forecasts
of circumstances surrounding that future environment. This is true for personal de-
cisions, such as when and whom to marry or when and how to invest savings, and
for complex decisions affecting an entire organization, firm, society, or the global
state of the earth. In recent years increased emphasis has been placed on improving
forecasting and decision making in economy and ecology, management and poli-
tics. Economic shocks, ecological catastrophes, political disasters, but also chances
such as new markets, new technological trends, and new social structures, should no
longer be random and fateful events sent by the gods. People want to be prepared
and have thus developed a variety of quantitative forecasting methods for different
situations, e.g., in business and management. From a methodological point of view,
every quantitative forecasting instrument can be characterized by a particular pre-
dictability horizon which limits its reliable application. Let us have a look at the
strengths and weakness of some forecasting instruments.

The most common quantitative methods of forecasting are the time-series pro-
cedures [9.2]. They assume that some pattern in a data series is recurring over time
and can be extrapolated to future periods. Thus, a time-series procedure may be ap-
propriate for forecasting environmental factors such as the level of employment or
the pattern of weekly supermarket sales where individual decisions have little im-
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pact. But time-series methods cannot explain the causes behind the data patterns. In
historical times, the method was used by the Babylonian astronomers who extrap-
olated the data pattern of moonrise into the future without any explanation based
on models of planetary motion. In the 18th century physicists knew little about
the causes of sunspots. But in the observations of sunspots a pattern of frequency
and magnitude was found and predictions were possible by its continuation through
time-series analysis. In business and economics, there are various underlying pat-
terns in data series. A horizontal pattern exists where there is no trend in the data
(e.g., products with stable sales). A seasonal pattern exists when a series fluctu-
ates according to some seasonal factor such as products whose sale depends on the
weather. A cyclic pattern may not repeat itself at constant intervals of time, e.g.,
the price of metals or the gross national product. A trend pattern exists when there
is a general increase or decrease in the value of the variable over time. When an
underlying pattern exists in a data series, that pattern must be distinguished from
randomness by averaging and weighting (“smoothing”) the past data values. Math-
ematically, a linear smoothing method can be used effectively with data that exhibit
a trend pattern. But smoothing methods make no attempt to identify individual com-
ponents of the basic underlying patterns. There may be subpatterns of trend, cycle,
and seasonal factors, which must be separated and decomposed in analyzing the
overall pattern of the data series.

While in time-series procedures some data pattern from the past is merely ex-
trapolated to the future, an explanatory model assumes a relationship between the
(“dependent”) variable y that we want to forecast and another (“independent”) vari-
able x. For example, the dependent variable y is the cost of production per unit, and
the independent variable x determining the cost of production is the number of units
produced. In this case, we can model the relationship in a two-dimensional coor-
dinate system of y and x and draw a straight line that in some sense will give the
best linear approximation of the relationship. Regression analysis uses the method
of least squares in order to minimize the distance between the actual observations
y and the corresponding points ŷ on the straight line of linear approximation. Obvi-
ously, there are many situations in which this is not a valid approach. An example
is the forecast of monthly sales varying nonlinearily according to the seasons of
the year. Furthermore, every manager knows that sales are not influenced by time
alone, but by a variety of other factors such as the gross national product, prices,
competitors, production costs, taxes, etc. The linear interaction of two factors only
is a simplification in economy similar to the two-body problems in the linear and
conservative world of classical physics.

But, of course, a complex model that is more accurate requires a larger amount
of effort, greater expertise and more computational time. In many decision-making
situations more than one variable can be used to explain or forecast a certain depen-
dent variable. An ordinary example is a marketing manager who wants to forecast
corporate sales for the coming year and to better understand the factors that influ-
ence them. Since he has more than one independent variable, his analysis is known
as multiple regression analysis. Nevertheless, the dependent variable he wishes to
forecast is expressed as a linear function of the independent variables. The compu-
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tation of the coefficients in the regression equation is based on the use of a sample
of past observations. Consequently the reliability of forecasts based on that regres-
sion equation depends largely on the specific sample of observations that were used.
Therefore degrees of reliability must be measured by tests of statistical significance.
While multiple regression involves a single equation, econometric models can in-
clude any number of simultaneous multiple regression equations [9.3]. In the case
of linear equations, the mathematical methods of solution are based on linear alge-
bra and linear optimization methods (e.g., simplex method). In spite of their linear-
ity, the econometric models may be highly complicated with many variables which
can only be mastered by computer programs and machines. The solution strategy
of nonlinear programming in economics often decomposes complex problems into
subproblems which can be approximately treated as linear.

An implicit assumption in using these methods is that the model best fitting
the available historical data will also be the best model to predict the future beyond
these data. But this assumption does not hold true for the great majority of real-
world situations. Furthermore, most data series used in economics and business are
short, measurement errors abound, and controlled experimentation is not possible. It
is therefore necessary to understand how various forecasting methods succeed when
changes in the established patterns of the past take place. The predictions are differ-
ent at the various forecasting horizons characterizing each method. Obviously, there
is no unique method that can forecast best for all series and forecasting horizons.
Sometimes there is nothing in the past data to indicate that a change will be forth-
coming. Thus, it may be impossible to anticipate a pattern change without inside
knowledge. Pattern shifts or the “change of paradigms” is an everyday experience
of business people and managers and by no means an extraordinary insight of some
philosophers of science in the tradition of Kuhn et al.

Are there quantitative procedures for determining when a pattern or relationship
in a data series has changed? Such methods indeed exist and use a tracking signal to
identify when changes in the forecasting errors indicate that a nonrandom shift has
occurred. In a quality control chart of, e.g., a production series of cars, the output
of the equipment is sampled periodically. As long as that sample mean is within
the control limits, the equipment is operating correctly. When this is not the case,
the production is stopped and an appropriate action is taken to return it to correct
operation. In general, automatic monitoring of quantitative forecasting methods fol-
lows the concept of a quality control chart. Every time a forecast is made, its error
(i.e., actual minus predicted value) is checked against the upper and lower control
limits. If it is within an acceptable range, the extrapolated pattern has not changed.
If the forecasting error is outside the control limits, there has probably been some
systematic change in the established pattern. Automatic monitoring through track-
ing signals may be appropriate when large numbers of forecasts are involved. But in
the case of one or only a few series, one must still play a waiting game to discover
whether changes in the trends of business data are occurring.

Forecasting the future of technological trends and markets, the profitability of
new products or services, and the associated trends in employment and unemploy-
ment is one of the most difficult, but also most necessary tasks of managers and
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politicians. Their decisions depend on a large number of technological, economic,
competitive, social, and political factors. Since the emergence of commercial com-
puters in the 1950s there has been hope that one might master these complex prob-
lems by increasing computational speed and data memory. Indeed, any quantitative
forecasting method can be programmed to run on a computer. As no single forecast-
ing method is appropriate for all situations, computer-based multiple forecasting
systems have been developed in order to provide a menu of alternative methods for
a manager. An example is the forecasting system SIBYL which is named after the
ancient seer Sibyl. The story goes that Sibyl of Cumae sold the famous Sibylian
books to the Roman king Tarquinius Superbus.

Indeed, SIBYL is a knowledge-based system (cf. Sect. 6.1) for a computerized
package of forecasting methods [9.4]. It provides programs for data preparation and
data handling, screening of available forecasting methods, application of selected
methods, and comparing, selecting, and combining of forecasts. In screening al-
ternative forecasting techniques, the inference component of the knowledge based
system suggests those methods that most closely match the specific situation and
its characteristics based on a broad sample of forecasting applications and decision
rules. The final function of SIBYL is that of testing and comparing which method
provides the best results. The interface of user and system is as friendly and efficient
as possible, in order to suit a forecasting expert as well as a novice. Nevertheless, we
must not forget that SIBYL can only optimize the application of stored forecasting
methods. In principle, the predictability horizon of forecasting methods cannot be
enlarged by the application of computers. Contrary to the learning ability of a hu-
man expert, forecasting systems such as SIBYL are still program-controlled with
the typical limitations of knowledge-based systems.

In general, the computer-based automation of forecasting followed along the
lines of linear thinking. On the other hand, the increasing capability of modern
computers encouraged researches to analyze nonlinear problems. In the mid-1950s
meteorologists preferred statistical methods of forecasting based on the concept of
linear regression. This development was supported by Norbert Wiener’s successful
predicting of stationary random processes. Edward Lorenz was sceptical about the
idea of statistical forecasting and decided to test its validity experimentally against
a nonlinear dynamical model (cf. Sect. 2.4). Weather and climate is an example of
an open system with energy dissipation. The state of such a system is modeled by
a point in a phase space, the behavior of the system by a phase trajectory. After
some transient process a trajectory reaches an attracting set (“attractor”) which may
be a stable singular point of the system (Fig. 2.14a or 3.11c), a periodic oscillation
called a limit cycle (Fig. 3.11d) or a strange attractor (Fig. 2.21). If one wants to
predict the behavior of a system containing a stable singular point or a limit cycle,
one may observe that the divergence of nearby trajectories appears not to be grow-
ing and may even diminish (Fig. 9.2). In this case, a whole class of initial conditions
will be able to reach the steady state and the corresponding systems are predictable.
An example is an ecological system with periodic trajectorties of prey and preda-
tor populations modeled by nonlinear Lotka–Volterra equations. The divergence or
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Fig. 9.2. Predictable system with stable point attractor or limit cycle and convergence of
nearby trajectories [9.5]

convergence of nearby trajectories can be measured numerically by the so-called
Lyapunov exponent:

Let us consider two nearby trajectories x(t) and x′(t) with the initial states x(0) and
x′(0) at time t = 0 and the length d(t) =

∣∣x′(t) − x(t)
∣∣ of the vector d(t). If the trajectories

converge, then d(t) ≈ eΛt and Λ < 0. The quantity Λ is called Lyapunov exponent and
defined as Λ(x(0), d(0)) = lim

t→∞ lim
d(0)→0

[(1/t) ln(d(t)/d(0))]. If it is positive, the Lyapunov

exponent gives the rate of divergence. In Fig. 9.2, the model process x′(t) delivers reliable
predictions of the real process x(t), because the system is assumed to have converging trajec-
tories independent of their initial conditions.

A phase portrait of a nonlinear system may have a number of attractors with dif-
ferent regions (“separatrices”) of approaching trajectories (cf. Fig. 2.10). For fore-
casting the future of the evolving system it is not sufficient to know all possible
attractors and the initial state x(0). What we need to know in addition are the sepa-
ratrices for attraction basins of the different attractors. If the initial state of a system
happens to be far away from the basin of a certain attractor, the final state of the
corresponding attractor cannot be predicted.

In Fig. 2.22a-c, the nonlinear logistic map describes a transition from order to
chaos depending on an increasing control parameter. Figure 2.23a,b illustrates the
corresponding sequence of bifurcations with the chaotic regime occurring beyond
a critical threshold. If the corresponding Lyapunov exponent is positive, the behavior
of the system is chaotic. If it is zero, the system has a tendency to bifurcate. If it is
negative, the system is in a stable state or branch of the bifurcation tree. In this
case the system is predictable. In the other cases the sensitivity to initial conditions
comes into play. It is remarkable that a nonlinear system in the chaotic regime is
nonetheless not completely unpredictable. The white stripes or “windows” in the
grey veil of a chaotic future (Fig. 2.23b) indicate local states of order with negative
Lyapunov exponents. Thus, in a sea of chaos we may find predictable islands of
order. In this case the system is at least predictable for characteristic short intervals
of time.

In general, the degree of predictability is measured by a statistical correlation
between the observed process and the model at the particular time since the start
of the observation. Values close to unity correspond to a satisfactory forecast, while
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small values indicate a discrepancy between observation and prediction. Every fore-
casting model has a certain time of predictable behavior after which the degree
of predictability decreases more or less rapidly to zero. With improvement of the
model the time of predictable behavior may be enlarged to some extent. But the pre-
dictability range depends upon fluctuational parameters. Weak microscopic pertur-
bations of locally unstable chaotic systems can reach a macroscopic scale in a short
time. Thus, local instabilities reduce the improvement of predictable behavior dras-
tically. The predictability horizon of a forecasting system means a finite timespan
of predictable behavior that cannot be surpassed by either improved measuring in-
struments or a refined prediction model. When we remember that the atmosphere
is modeled, following Lorenz, by nonlinear systems with local and global instabili-
ties, we realize the difficulties encountered by meteorologists in obtaining efficient
long- or even medium-term forecasting. The belief in a linear progress of weather
forecasting by increasing computational capacities was an illusion of the 1950s.

As nonlinear models are applied in different fields of research, we gain general
insights into the predictable horizons of oscillatory chemical reactions, fluctuations
of species, populations, fluid turbulence, and economic processes. The emergence
of sunspots, for instance, which was formerly analyzed by statistical methods of
time-series is by no means a random activity. It can be modeled by a nonlinear
chaotic system with several characteristic periods and a strange attractor only al-
lowing bounded forecasts of the variations. In nonlinear models of public opinion
formation, for instance, we may distinguish a predictable stable state before the
public voting (“bifurcation”) when neither of two possible opinions is preferred,
the short interval of bifurcation when tiny unpredictable fluctuations may induce
abrupt changes, and the transition to a stable majority. The situation reminds us of
growing air bubbles in turbulently boiling water: When a bubble has become big
enough, its steady growth on its way upward is predictable. But its origin and early
growth is a question of random fluctuation. Obviously, nonlinear modeling explains
the difficulties of the modern Pythias and Sibyls of demoscopy.

Today, nonlinear forecasting models do not always deliver better and more ef-
ficient predictions than the standard linear procedures. Their main advantage is the
explanation of the actual nonlinear dynamics in real processes, the identification and
improvement of local horizons with short-term predictions. But first of all an appro-
priate dynamical equation governing an observation at time t must be reconstructed,
in order to predict future behavior by solving that equation. Even in the natural sci-
ences, it is still unclear whether appropriate equations for complex fields such as
earthquakes can be derived. We may hope to set up a list in a computer memory
with typical nonlinear equations whose coefficients can be automatically adjusted
for the observed process. Instead, to make an exhaustive search for all possible rel-
evant parameters, a learning strategy may start with a crude model operating over
relatively short times and then specify a smaller number of parameters in a rela-
tively narrow range of values. An improvement of short-term forecasting has been
realized by the learning strategies of neural networks. On the basis of learned data,
neural nets can weight the input data and minimize the forecasting errors of short-
term stock quotations by self-organizing procedures (Fig. 6.14a,b). So long as only
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some stock market advisors use this technical support, they may do well. But if
all agents in a market use the same learning strategy, the forecasting will become
a self-defeating prophecy.

The reason is that human societies are not complex systems of molecules or
ants, but the result of highly intentional acting beings with a greater or lesser amount
of free will [9.6]. A particular kind of self-fulfilling prophecy is the Oedipus effect
in which people like the legendary Greek king try, in vain, to change their future
as forecasted to them. From a macroscopic viewpoint we may, of course, observe
single individuals contributing with their activities to the collective macrostate of so-
ciety representing cultural, political, and economic order (“order parameters”). Yet,
macrostates of a society, of course, do not simply average over its parts. Its order
parameters strongly influence the individuals of the society by orientating (“enslav-
ing”) their activities and by activating or deactivating their attitudes and capabilities.
This kind of feedback is typical for complex dynamical systems. If the control pa-
rameters of the environmental conditions attain certain critical values due to inter-
nal or external interactions, the macrovariables may move into an unstable domain
out of which highly divergent alternative paths are possible. Tiny unpredictable mi-
crofluctuations (e.g., actions of very few influential people, scientific dicoveries,
new technologies) may decide which of the diverging paths in an unstable state of
bifurcation society will follow.

One of the deepest insights into complex systems is the fact that even com-
plete knowledge of microscopic interactions does not guarantee predictions of the
future. In this book, we have learnt that simple rules of physical, genetic, neural, or
social dynamics can generate very complex and even random patterns of material
formation, organic growth, mental recognition, and social behavior. Randomness, in
a practical sense, only means that future formation or behavior cannot be detected
by familiar and well-known patterns or programs. In this case, the computability of
the future is not reducible relative to certain patterns and programs. Randomness,
in principle, implies computational irreducibility: Then, there is no finite method of
predicting how the system will behave except by going through nearly all the steps
of actual development. In the case of randomness, there is no shortcut to evolution.
Mathematical systems like cellular automata (CA) or technical systems like cellular
neural/nonlinear networks (CNN) can achieve exactly the same level of complexity
and randomness of nature and society. Thus, the traditional view of science – that
precise knowledge of laws allows precise forecasting – fails in the case of nonlinear
and random dynamics.

9.2 Complexity, Science, and Technology

Despite the difficulties referred to above, we need reliable support for short-,
medium-, and long-term forecasts of our local and global future. A recent demand
from politics is the modeling of future developments in science and technology
which have become a crucial factor of modern civilization. Actually, this kind of
development seems to be governed by the complex dynamics of scientific ideas and
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research groups which are embedded in the complex network of human society.
Common topics of research groups attract the interest and capacity of researchers
for longer or shorter periods of time. These research “attractors” seem to dominate
the activities of scientists like the attractors and vortices in fluid dynamics. When
states of research become unstable, research groups may split up into subgroups
following particular paths of research which may end with solutions or may bifur-
cate again, and so forth. The dynamics of science seems to be realized by phase
transitions in a bifurcation tree with increasing complexity. Sometimes scientific
problems are well-defined and lead to clear solutions. But there are also “strange”
and “diffuse” states like the strange attractors of chaos theory.

Historically, quantitative inquiries into scientific growth started with statistical
approaches such as Rainoff’s work on “Wave-like fluctuations of creativity in the
development of West-European physics in the 18th and 19th century” (1929). From
a sociological point of view Robert Merton discussed “Changing foci of interest in
the sciences and technology”, while Pitirim Sorokin analyzed the exponential in-
crease of scientific discoveries and technological inventions since the 15th century.
He argued that the importance of an invention or discovery does not depend on
subjective weighting, but on the amount of subsequent scientific work inspired by
the basic innovation. As early as 1912 Alfred Lotka had the idea of describing true
epidemic processes like the spread of malaria and chemical oscillations with the
help of differential equations. Later on, the information scientist William Goffman
applied the epidemic model to the spread of scientific ideas. There is an initial fo-
cus of “infectious ideas” infecting more and more people in quasi-epidemic waves.
Thus, from the viewpoint of epidemiology, the cumulation and concentration in
a scientific field is modeled by so-called Lotka- and Bradford-distributions, starting
with a few articles of some individual authors which are the nuclei of publication
clusters [9.7]. The epidemic model was also applied to the spread of technical in-
novations. In all these examples we find the well-known S-curve of a logistic map
(Fig. 2.22a) with a slow start followed by an exponential increase and then a final
slow growth towards saturation. Obviously a learning process is also described in
the three phases of an S-curve with slow learning success of an individual in the be-
ginning, then a rapid exponential increase and finally a slow final phase approaching
saturation.

The transition from statistical analysis to dynamical models has the great
methodological advantage that incomprehensible phenomena such as strange fluctu-
ations or statistical correlations of scientific activities can be illustrated in computer-
assisted simulation experiments with varying dynamical scenarios. The epidemic
model and Lotka–Volterra equation were only a first attempt to simulate coupled
growth processes of scientific communities. However, essential properties of evo-
lutionary processes like creation of new structural elements (mutation, innovation,
etc.) cannot be reflected. Evolutionary processes in social systems have to be pic-
tured through unstable transitions by which new ideas, research fields, and tech-
nologies (like new products in economic models) replace already existing ones and
thereby change the structure of the scientific system. In a generalization of Eigen’s
equation of prebiotic evolution (cf. Sect. 3.3), the scientific system is described by
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an enumerable set of fields (i.e., subdisciplines of a scientific research field), each
of which is characterized by a number of occupying elements (i.e., scientists work-
ing in the particular subdiscipline). Elementary processes of self-reproduction, de-
cline, exchange, and input from external sources or spontaneous generation have to
be modeled. Each self-replication or death process changes only the occupation of
a single field. For simple linear self-reproduction processes without exchange, the
selection value of a field is given by the difference between the “birth” and “death”
rates of the field. When a new field is first populated, it is its selection value that
decides whether the system is stable or unstable with respect to the innovation. If
its selection value is larger than any other selection value of existing fields, the new
field will outgrow the others, and the system may become unstable. The evolution
of new fields with higher selection values characterizes a simple selection process
according to Darwinian “survival of the fittest”.

But we must not forget that such mathematical models do not imply the reduc-
tion of scientific activities to biological mechanisms. The variables and constants of
the evolution equation do not refer to biochemical quantities and measurements, but
to the statistical tables of scientometrics. Self-reproduction corresponds to young
scientists joining the field of research they want to start working in. Their choice
is influenced by education processes, social needs, individual interest, scientific
schools, etc. Decline means that scientists are active in science for a limited number
of years. The scientists may leave the scientific system for different reasons (e.g.,
age). Field mobility means the process of exchange of scientists between research
fields according to the model of migration. Scientists might prefer the direction of
higher attractiveness of a field expressed by a higher self-reproduction rate. When
processes include exchange between fields with nonlinear growth functions of self-
reproduction and decline, then the calculation of selection values of an innovation is
a rather complicated mathematical task. In general, a new field with higher selection
value is indicated by the instability of the system with respect to a corresponding
perturbation.

Actually, scientific growth is a stochastic process. When, for example, only
a few pioneers are working in the initial phase of a new field, stochastic fluctuations
are typical. The stochastic dynamics of the probable occupation density in the sci-
entific subfields is modeled by a master equation with a transition operator which is
defined by transition probabilities of self-reproduction, decline, and field mobility.
The stochastic model provides the basis for several computer-assisted simulations
of scientific growth processes. The corresponding deterministic curves, as average
over a large number of identical stochastic systems, are considered for trend anal-
ysis, too. As a result, the general S-shaped growth law for scientific communities
in subdisciplines with a delayed initial phase, a rapid growth phase, and a satura-
tion phase has been established in several simulations. In a series of simulations
(Fig. 9.3), a research field was assumed to comprise about 120–160 members. For
five fields, 100 scientists were chosen as initial condition with the saturation domain
near the initial conditions. A sixth field is not yet set up (with the initial condition
of zero members). In a first example, the influence of the self-reproduction process
on the growth curve of the new field was simulated for several cases. With increas-
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Fig. 9.3. Influence of the self-reproduction rate of a new scientific field on the growth curves
of neighboring fields [9.8]

ing self-reproduction rates the new field grows ever more rapidly at the expense of
neighboring fields.

The emergence of a new field may have a tendency to more coexistence or se-
lection. The growth of the initial phase may be more or less rapid or can also be
delayed. A famous example of delayed growth in the history of science is chaos the-
ory itself, which was treated by only very few scientists (e.g., Poincaré) in its initial
phase. Although the mathematical principles of the new field were quite clear, its ex-
ponential growth began only some years ago when computational technology could
handle nonlinear equations. Sometimes an emerging field cannot expand to a real
domain of science, because it has only a weak selection advantage in comparison
with mighty surrounding fields. It is a pity that some technological fields such as al-
ternative energies (e.g., wind, solar) are still in such a poor state, surrounded by the
powerful industries of traditional or nuclear energy. If a new attractive field emerges,
a strong influx of scientists from the surrounding fields can be observed. These peo-
ple are adapting to the style and problem solving pattern of the new field. This kind
of directed field mobility sometimes leads to the phenomena of fashion in science.

It is well-known that the S-shaped nonlinear logistic map gives rise to a variety
of complex dynamical behaviors such as fixed points, oscillations, and deterministic
chaos, if the appropriate control parameters increase beyond certain critical values
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(Fig. 2.22). Obviously, both the stochastic and the deterministic models reflect some
typical properties of scientific growth. Such effects are structural differentiation,
deletion, creation, extension of new fields with delay, disappearance, rapid growth,
overshooting fashions, and regression. The computer-assisted graphic simulations
of these dynamical effects allow characterization by appropriate order parameters
which are testable on the basis of scientometric data. Possible scenarios under vary-
ing conditions can be simulated, in order to predict the landmarks and the scope of
future developments.

But so far, the evolution of scientific research fields has been considered in
the model only in terms of changes of the scientific manpower in the selected
fields. A more adequate representation of scientific growth must take account of
the problem-solving processes of scientific endeavors. But it is a difficult method-
ological problem to find an adequate state space representing the development of
problem solving in a scientific field. In the mathematical theory of biological evolu-
tion, the species can be represented by points in a high-dimensional space of biolog-
ical characters (Fig. 3.4). The evolution of a species corresponds to the movement
of a point through the phenotypic character space. Analogously, in the science sys-
tem, a high-dimensional character space of scientific problems has to be established.
Configurations of scientific articles which are analyzed by the technique of multidi-
mensional scaling in co-citation clusters can be represented by points in a space of
two or three dimensions. Sometimes research problems are indicated by sequences
of keywords (“macro-terms”) which are registered according to the frequency of
their occurrence or co-occurrence in a scientific text.

In a continuous evolution model each point of the problem space is described
by a vector corresponding to a research problem (Fig. 9.4a). The problem space
consists of all scientific problems of a scientific field, of which some are perhaps
still unknown and not under investigation. This space is metric, because the dis-
tance between two points corresponds to the degree of thematic connection between
the problems represented. The scientists working on problem q at time t distribute
themselves over the problem space with the density x(q, t). In the continuous model
x(q, t) dq means the number of scientists working at time t in the “problem element”
dq (Fig. 9.4b).

Thus the research fields may correspond to more or less closely connected point
clouds in the problem space. Single points between these areas of greater density
correspond to scientists working on isolated research problems which may repre-
sent possible nuclei of new research fields. History of science shows that it may
take decades before a cluster of research problems grows up into a research field.
In the continuous model, field mobility processes are reflected by density change:
If a scientist changes from problem q to problem q′, then the density x(q, t) will
get smaller and x(q′, t) will increase. The movement of scientists in the problem
space is modeled by a certain reproduction–transport equation. A function a(q) ex-
presses the rate at which the number of scientists in field q is growing through
self-reproduction and decline. Thus, it is a function with many maxima and minima
over the problem space, expressing the increasing or decreasing attractiveness of the
problems in a scientific field. In analogy to physical potentials (e.g., Fig. 4.10), one
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Fig. 9.4a,b. A two-dimensional problem space (a) with research fields (r) as clouds of related
problems, possible nuclei (n) of new research fields, and a potential landscape (b) of research
activities x(q, t) in problem q = (q1, q2) of the problem space at time t [9.9]

may interpret a(q) as a potential landscape of attractiveness with hills and valleys,
representing the attractors and deadlocked areas of a research field (Fig. 9.4b).

Dynamical models of the growth of knowledge become testable by scientomet-
rics. Thus, they may open a bridge between philosophy of science with its concep-
tual ideas of scientific growth and history of science with its evaluation of scientific
documents. In cognitive scientometrics an attempt has recently been made to quan-
tify the concept of research problems and to represent them in appropriate problem
spaces by bibliometric, cognitive, and social characteristics. The simplified schemes
of the history of science which have been suggested by Popper, Kuhn, and others,
could perhaps be replaced by testable hypotheses. Kuhn’s discontinuous sequence
with phases of “normal” and “revolutionary” science is obviously not able to tackle
the growth of knowledge. On the other hand, the naive belief of some historians that
the growth of science is a continuous cumulation of eternal truths is not appropriate
to the complex dynamics of research in any way. Even Popper’s sophisticated late
philosophy that science does not grow through a monotonic increase of the num-
ber of indubitably established laws but through learning strategies of hypotheses
and criticism needs more precision and clarification with reference to the changing
historical standards of methodology, institutionalization, and organization. The in-
creasing computational capacities of modern computers enable a new quantitative
approach with simulation experiments in social sciences. The great advantage of dy-
namical models is their computer-assisted graphic illustration of several scenarios
with varying parameters. These scenarios may confirm, restrict, or refute the chosen
model. Last but not least, we need reliable support for decisions in science policy.
Different scenarios of future developments may help us to decide where to invest
our limited resources of research budget and how to realize desirable future states
of society.
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Thus nonlinear modeling and computer-assisted simulation may enable us to
derive multiple futures, but provides no algorithm to decide between them. Nor-
mative goals must be involved in order to realize desirable future states of society.
Since the 1960s the reports of the Club of Rome have tried to initiate international
debates about the goals and alternative futures of mankind, supported by quantitative
long-term forecasts. In Sect. 7.2, we saw the limitations of quantitative long-term
forecasting in a nonlinear world. Consequently, scientific ideas and technological
innovations cannot be forced into being by political decisions. But they must no
longer be fateful random events which may or may not happen. We need instru-
ments to evaluate desirable goals and their chance of realization.

A nonquantitative approach is the so-called Delphi method, used to prepare de-
cisions and forecasts of scientific and technological trends by a panel of experts. The
name “Delphi” is a reference to the legendary Pythia (Fig. 9.1) who was said to pre-
pare her prophecies by gathering information about her clients. The Delphi method
of today uses the estimates of scientific experts. The individual experts are kept apart
so that their judgement is not influenced by social pressure or group behavior. The
experts were asked in a letter to name and to weight inventions and scientific break-
throughs that are possible and/or desirable in a certain period of time. Sometimes
they are not only asked for the probability of each development: Additionally, they
are asked to estimate the probability that the occurrence of any one of the potential
developments will influence the likelihood of occurrence of each of the others. Thus
one gets a correlated network of future developments which can be represented by
a matrix of subjective conditional probabilities. In the next phase the experts are
informed about the items with general consensus. When they are asked to state the
reasons for their disagreement with the majority, several of the experts re-evaluate
their time estimates, and a narrower range for each breakthrough may be arranged.

The Delphi method, of course, cannot deliver a single answer. But the spread
of expert opinions gathers considerable information about potential major break-
throughs. The average deviations from the majority should be narrowed down with-
out pressuring the experts with extreme responses. But the Delphi method therefore
cannot predict the unexpected. Sometimes the Delphi method is supported by the
relevance-tree method, in order to select the best actions from alternatives by con-
structing decision trees. The relevance-tree method uses the ideas of decision theory
to assess the desirability of a certain future and to select those areas of science and
technology whose development is necessary for the achievment of those goals.

Obviously there is no single method of forecasting and deciding in a complex
nonlinear world. We need an integrative (“hybrid”) network of quantitative and qual-
itative methods. Finally, we need ethical landmarks to guide us in applying these
instruments and in mastering the future.

9.3 Complexity, Responsibility, and Freedom

In recent years, ethics has become a major topic attracting increasing interest from
a wide variety of professionals including engineers, physicians, scientists, managers,
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and politicians. The reasons for this interest are the growing problems with the
environment, the economy, and modern technologies, questions of responsibility,
increasing alarm, and decreasing acceptance of critical consequences in a highly
industrialized world. But we must be aware that our standards of ethical behavior
have not fallen to Earth from Heaven and have not been revealed by some mysteri-
ous higher authority. They have changed and they will continue to change, because
they are involved in the evolution of our sociocultural world.

In modeling human society we must not forget the highly nonlinear selfrefer-
entiality of a complex system with intentionally acting beings. There is a particular
measurement problem in social sciences arising from the fact that scientists ob-
serving and recording behavior of society are themselves members of the social
system they observe. Well-known examples are the effects of demoscopic opinion-
polling during political elections. Furthermore, theoretical models of society may
have a normative function influencing the future behavior of its agents. A well-
known example was the social Darwinism of the 19th century which tried to explain
the social development of mankind as a linear continuation of biological evolution.
Actually, that social theory initiated a brutal ideology legitimating the ruthless se-
lection of the social, economic, and racial victors of history. Today, it is sometimes
fashionable to legitimate political ideas of basic democracy and ecological econ-
omy by biological models of self-organization [9.10]. But nature is neither good nor
bad, neither peaceful nor militant. These are human evaluations. Biological strate-
gies over millions of years have operated at the expense of myriads of populations
and species with gene defects, cancer, etc., and have, from a human point of view,
perpetrated many other cruelties. They cannot deliver the ethical standards for our
political, economic, and social developments.

In this book we have seen that the historical models of life, mind, and society
often depend on historical concepts of nature and historical standards of technology.
Especially the linear and mechanistic view of causality was a dominant paradigm
in the history of natural, social, and technical sciences. It also influenced ethical
norms and values which cannot be understood without the epistemic concepts of the
historical epochs in which they arose. The historical interdependence of epistemol-
ogy and ethics does not mean any kind of relativism or naturalism. As in the case
of scientific theories and hypotheses we have to distinguish their context of histor-
ical and psychological invention and discovery from their context of justification
and validity. Even human rights have a historical development with changing mean-
ings [9.11]. Hegel once mentioned that the history of mankind can be understood as
a “development to freedom”. Thus, before we discuss possible ethical consequences
in a complex, nonlinear, and random world, we should take a short glance at the his-
torical development of ethical standards.

Ethics is a discipline of philosophy like logic, epistemology, philosophy of sci-
ence, language, law, religion, and so on [9.12]. Historically, the word “ethics” stems
back to the Greek word ’̃ηϑoς , which means custom and practice. Originally, ethics
was understood as a doctrine of moral customs and institutions teaching people how
to live. The central problem of ethics has become that of finding a good moral code
with advice on how to live well, how to act justly, and how to decide rationally. Some
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essential concepts of ethics were already discussed in Greek philosophy following
Socrates. His student Plato generalized the Socratic quest for a good life to the uni-
versal idea of the greatest good, which is eternal and independent of the historical
life behind the transistory and continously changing world of matter [9.13].

Aristotle criticized his teacher’s doctrine of eternal values as ignorant of real
human life. For Aristotle the validity of the good, the just, and the rational is re-
ferred to the political society (polis), the family, and the interaction of single per-
sons [9.14]. Justice in the polis is realized by the proportionality or the equilibrium
of natural interest of free men. The greatest good of man is happiness, which is re-
alized by a successful life according to the natural customs and practice in the polis
and the family. Obviously, Aristotle’s concept of ethics corresponds to his organic
view of a nature filled with growing and maturing organisms like plants, animals,
and humans.

After the dissolution of the Greek polis, ethics needed a new framework of stan-
dards. In Epicurean ethics, the internal equality of individual life, action, and feeling
was emphasized, while the ethics of the Stoics underlined the external equality of
all people achieved by nature. In the Christian Middle Ages a hierarchy of eternal
values was guaranteed by the divine order of the world. At the beginning of modern
times the theological framework as a universally accepted foundation of ethics was
ripe for dissolution.

Descartes not only suggested a mechanistic model of nature but also demanded
a moral system founded upon scientific reason. Baruch Spinoza derived an axiom-
atized system of rationalist morality corresponding to the deterministic and mech-
anistic model of nature. As the laws of nature are believed to be identical with the
laws of rationality, human freedom only could mean acting according to determinis-
tic laws which were recognized as rational. The greatest good meant the dominance
of rationality over the affects of the material human body. Hobbes defended a mech-
anistic view of nature and society, but he doubted human rationality. Political laws
and customs can only be guaranteed by the centralized power of “Leviathan”. The
greatest good is peace as a fixed and final equilibrium in an absolutist state.

The liberal society of Locke, Hume, and Smith was understood by analogy
with Newton’s model of separable forces and interacting celestial bodies. In the
American and French revolutions, individual freedom was proclaimed as a natural
right [9.15]. But how to justify individual freedom in a mechanistic world with
deterministic causality? Every natural event is the effect of a linear chain of causes
which in principle can be derived by mechanistic equations of motion. Only humans
are assumed to be capable of spontaneous and free decisions initiating causal chains
of actions without being influenced by outer circumstances. Kant called this human
feature the “causality of freedom”.

As nobody’s opinions and desires are privileged, only advice which is accept-
able for everybody is justified as reasonable. In the words of Kant, only those gen-
erally accepted “maxims” can be justified as universal moral laws. This formal prin-
ciple of moral universality is Kant’s famous categorical imperative of reason: we
should act according to imperatives which can be justified as general laws of moral-
ity. The freedom of a person is limited by the freedom of his or her neighbor. In
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another famous formulation, Kant said that humans as free beings should not be mis-
used as instruments for the interests of other humans. Thus, besides the mechanistic
world of nature, which is ruled by deterministic laws, there is the internal world
of reason with the laws of freedom and morality. Kant’s ethic of freedom has been
incorporated in the formal principles of every modern constitutional state [9.16].

But how can the laws of freedom be realized in the real world of politics
and economics? During the initial process of industrialization the ethics of Anglo-
American utilitarianism (due to Bentham and Mill) required an estimation of per-
sonal happiness. The happiness of the majority of people was declared to be the
greatest good of ethics. While Kant suggested a formal principle of individual free-
dom, the utilitarian principle of happiness can be interpreted as its material comple-
tion. It was explicitly demanded as a natural human right in the American constitu-
tion. The utilitarian philosophers and economists defined the demand for happiness
as an utility function that must be optimized with as few costs as possible in order
to realize the greatest welfare for the majority of people. The principles of utilitari-
anism have become the ethical framework of welfare economics [9.17].

Modern philosophers like John Rawls have argued that the utilitarian princi-
ple in combination with Kant’s demand for ethical universality can help to realize
the demand for a just distribution of goods in modern welfare politics [9.18]. From
a methodological point of view, the ethical, political, and economic model of utilitar-
ianism corresponds to a self-organizing complex system with a single fixed point of
equilibrium which is realized by an optimization of the utility function of a society
and which is connected with a just distribution of goods to the majority of people.

Obviously, Kant’s ethics as well as Anglo-American utilitarianism are norma-
tive demands to judge our actions. They may be accepted or not by individuals.
Hegel argued that the subjective ethical standards of individuals were products of
objective historical processes in history which were realized by the institutions of
a society. Thus, he distinguished between the subjective morality and subjective rea-
son of individuals and the objective morality and objective reason of institutions in
a society. Historically, Hegel’s foundation of ethics in the actual customs and moral-
ity of a civil society reminds the reader of Aristotle’s realistic ethics of the Greek
polis. But Aristotle’s order of society was static, while Hegel assumed a historical
evolution of states and their institutions.

From a methodological point of view, it is remarkable that Hegel already dis-
tinguished between the micro-level of individuals and a macro-level of societies
and their institutions which is not only the sum of their citizens. Furthermore, he
described an evolution of society which is not determined by the intentions and
the subjective reason of single individuals, but by the self-organizing process of
a collective reason. Nevertheless, Hegel believed in a rather simplified model of
evolution with sequential states of equilibrium leading to a final fixed point which
is realized by the attractor of a just civil society. Actual history after Hegel showed
that his belief in the rational forces of history driving human society to a final state
of justice by self-organization was a dangerous illusion. It is well known that his
model was modified and misused by totalitarian politicians of the political right and
left.
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Friedrich Nietzsche attacted the belief in objective reason as well as in eternal
ethical values as idealistic ideologies which were contrary to the real forces of life.
Nietzsche’s philosophy of life was influenced by Darwin’s biology of evolution,
which had become a popular philosophy in the late 19th century. Although Niet-
zsche had criticized nationalism and racism in his writings, his glorification of life
and the victors in the struggle of life was terribly misused in the politics of the 20th

century. Nevertheless, he is another example to show that concepts from the natural
sciences have influenced political and ethical ideas [9.19].

Nietzsche’s nihilism and his critique of modern civilization were continued by
Martin Heidegger in our century. In Heidegger’s view, the technical evolution of
mankind is an automatism without orientation which has forgotten the essential
foundation of man and humanity. A philosopher like Heidegger cannot and will not
change or influence this evolution. He only has the freedom to bear this fate with
composure. But in what way is Heidegger’s attitude against technology and civi-
lization more than resignation, fatalism, and an escape into an idyllic utopia without
technology which has never existed in history? It seems to be the extreme counter-
position to the Laplacean belief in an omnipotent planning and controlling capacity
in nature and society [9.20].

What are the ethical consequences of the complex system approach which has
been discussed in this book? First, we must be aware that the theory of complex
systems is not a metaphysical process ontology. It is not an epistemic doctrine in the
traditional sense of philosophy. The principles of this methodology deliver a heuris-
tic scheme for constructing models of nonlinear complex systems in the natural and
social sciences. If these models can be mathematized and their properties quanti-
fied, then we get empirical models which may or may not fit the data. Moreover,
it tries to use a minimum of hypotheses in the sense of Ockham’s razor. Thus it
is a mathematical, empirical, testable, and heuristically economical methodology.
Furthermore, it is an interdisplinary research program in which several natural and
social sciences are engaged. However, it is not an ethical doctrine in the traditional
sense of philosophy.

Nevertheless, our models of complex, nonlinear, and random processes in na-
ture and society have important consequences for our behavior. In general, linear
thinking may be dangerous in a nonlinear complex reality. We have seen that tradi-
tional concepts of freedom were based on linear models of behavior. In this frame-
work every event is the effect of a well defined initial cause. Thus, if we assume
a linear model of behavior, the responsibility for an event or effect seems to be
uniquely decidable. But what about the global ecological damage which is caused
by the local nonlinear interactions of billions of self-interested people? Recall, as
one example, the demand for a well balanced complex system of ecology and eco-
nomics. As ecological chaos can be global and uncontrollable, some philosophers
like Hans Jonas have proposed that we stop any activity which could perhaps have
some unknown consequences [9.21]. But we can never forecast all developments of
a complex system in the long run. Must we therefore retire into a Heidegger-like
attitude of resignation? The problem is that doing nothing does not necessarily sta-
bilize the equilibrium of a complex system and can drive it to another metastable



9.3 Complexity, Responsibility, and Freedom 435

state. In chaotic situations, short-term forecasting is possible in complex systems,
and attempts are being made to improve it in economics, for instance. But in the case
of randomness and information noise, any kind of forecasting fails, eventhough we
may be completely informed about the local rules of interaction in a complex sys-
tem.

In a linear model, the extent of an effect is believed to be similar to the extent
of its cause. Thus, a legal punishment of a punishable action can be proportional to
the degree of damage effected. But what about the butterfly effect of tiny fluctua-
tions which are initiated by some persons, groups, or firms, and which may result in
a global crisis in politics and economics? For instance, consider the responsibility
of managers and politicians whose failure can cause the misery of thousands or mil-
lions of people [9.22]. But what about responsibility in the case of random events?
Information noise in the Internet, for example, must be prevented beforehand. If
random happens, it is too late.

As the ecological, economic, and political problems of mankind have become
global, complex, nonlinear, and random, the traditional concept of individual re-
sponsibility is questionable. We need new models of collective behavior depending
on the different degrees of our individual faculties and insights. Individual freedom
of decision is not abolished, but restricted by collective effects of complex sys-
tems in nature and society which cannot be forecast or controlled in the long run.
Thus, it is not enough to have good individual intentions. We have to consider their
nonlinear effects. Global dynamical phase portraits deliver possible scenarios un-
der certain circumstances. They may help to achieve the appropriate conditions for
fostering desired developments and preventing evil ones.

The dynamics of globalization is surely the most important political challenge
of complexity for the future of mankind. After the fall of the Berlin wall, politi-
cians believed in the linear assumption that coupling the dynamics of free markets
and democracy would automatically lead to a community of modernized, peace-
loving nations with civic-minded citizens and consumers. This was a terrible error in
a complex world! From our point of view, complexity is driven by multi-component
dynamics. Politicians and economists forgot that there are also ethnic and religious,
psychological and social forces which can dominate the whole dynamics of a nation
at a critical point of instability. As we all know from complex dynamical systems,
we must not forget the initial and secondary conditions of dynamics. Instability
emerges if free markets and elections are implemented under conditions of under-
development.

Recent studies [9.23] demonstrate that in many countries of Southeast Asia,
South America, Africa, Southeast Europe, and the Middle East the coupling of
laissez-faire economics and electoral freedom did not automatically lead to more
justice, welfare, and peace, but tipped the balance in these regions toward disinte-
gration and strife. One reason is that these countries mainly have no broad majority
of well educated people. Thus, minorities of clever ethnic groups, tribes, and clans
come to power and dominate the dynamics of markets and politics. In the terminol-
ogy of complex dynamics, they are the order parameters dominating (“enslaving”)
the whole dynamics of a nation. Again, the good intentions of democracy and free
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markets are not sufficient. We must consider the local conditions of countries and
regions.

In classical philosophy, the transition from an intended development to a de-
velopment contrary to the spirit of the philosophy has become famous as a con-
tradiction of dialectics (e.g., Hegel). Good intentions may lead to bad effects. But
sometimes human agents are driven by history to good effects without their subjec-
tive intentions. Hegel called it a “stratagem of reason” (List der Vernunft). Actually,
it is a well-known effect of nonlinear dynamics. Therefore, market-dominant mi-
norities are not a priori evil. Minorities are also the driving forces of activity. If they
are open-minded and flexible, they prevent narrow-minded “enslaving” which may
be successful only for a short time. In their own interest, they must try to stabilize
the whole system in the long run. Therefore they should help dampening the social
effects of free markets, bridging social cleavages, and transcending class division
during a phase transition to democracy and welfare for the majority of the people.
But these phase transitions may be different from region to region in the world. Re-
sponsible decisions require sensativity to local conditions in light of the butterfly
effect.

There are not only local minorities in regions and countries. During the process
of globalization, a minority of nations, institutions, and companies can come to
power and dominate the whole dynamics of global economics and politics. Recent
discussions on globalization show that a lot of people are not happy with the results
of globalization. But it is necessary to understand that globalization means nothing
more than the gobal dynamics of political and economic systems in the world. So,
in a first run, it is neither good nor evil like the dynamics of weather. But contrary to
weather, the dynamics of globalization is generated by the interactions of humans
and their institutions. Thus, there will be a chance to influence globalization if we
take into account the dynamical laws of complexity and nonlinearity.

It is a hard fact that the order parameters of globalization have been defined by
a minority of nations. They are the world’s preeminent political, economic, military,
and technological powers whether we like it or not. Philosophers, mathematicians,
and systems scientists have no power. But, again, we should use Hegel’s “stratagem
of reason”: Minorities are also the centers of driving power which enables chances
for change. Concepts and ideas without political power have no chance. If the dom-
inating minorities of globilization are open-minded and flexible, they will prevent
narrow-minded “enslaving” which may be successful only for a short time. In their
own interest, they must try to stabilize the whole system in the long run. Therefore
they should help dampening the social effects of global free markets, bridging so-
cial cleavages, and transcending class division during a phase transition to global
democracy and welfare for the majority of the people.

Globalization means the critical phase transion to global governance in the
world. We need new global structures to manage the political, economic, military,
and technological power in the world according to the interests of the majority of
people on earth. Global structures emerge from the nonlinear interactions of peoples,
nations, and systems. At the end of the 18th century, Kant already demanded a law
of nations leading “To Eternal Peace” (1795) [9.24]. After the 1st World War, pres-
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ident Wilson of the United States strongly influenced the foundation of the League
of Nations. After the 2nd World War, the United Nations (UN) presented a new
chance to handle international conflicts, but they often fail because of their lack of
power. The dilemma of international law is that law needs power to enforce rights
and ethical norms. Therefore nations have to give up parts of their sovereignty, in
order to be dominated by commonly accepted “order parameters”. After Septem-
ber 11 2001, a global network of terrorism threatens the preeminent political and
economic nations of the world. This is the reason why especially the United States,
which historically helped found the League of Nations as well as the Unitied Na-
tions, now hesitates to restrict its national sovereignty and prefers to organize its
own national security through global military defense.

Clearly it is a long way to global governance among autonomous nations.
On the other hand, we must not forget the practical progress made by new so-
cial and humanitarian institutions of the UN. New economic, technological, and
cultural networks of cooperation emerge and let people grow slowly together in
spite of reactions and frictions in political reality. On the way to “eternal peace”,
Kant described a federal (multi-component) community of autonomous nations self-
organizing their political, economic, and cultural affairs without military conflicts.
But an eminent working condition of his model is the demand that states organize
their internal affairs according to the civil laws of freedom. It is a hard fact of histor-
ical experience that civic-mindedness and humanization have sometimes not only
be defended, but also enforced by military power. As long as the demand for civil
laws of freedom is not internationally fulfilled, the organization of military power is
an urgent challenge to globalization.

Globalization and international cooperation is accelerated by the growth of
global information and computational networks like the internet and wireless mobile
communication systems. On the other hand, the electronic vision of a global village
implies a severe threat to personal freedom. If information about citizens can eas-
ily be gained and evaluated in large communication networks, then the danger of
misuse by interested institutions must to be taken in earnest. As in the traditional
economy of goods, there may arise information monopolies acting as dominating
minorities prejudicing other people, classes, and countries. For instance, consider
the former “Third World” or the “South” with its less developed systems for infor-
mation services which would have no fair chance against the “North” in a global
communication village.

Our physicians and psychologists must learn to consider humans as complex
nonlinear entities of mind and body. Linear thinking may fail to yield a successful
diagnosis. Local, isolated, and “linear” therapies of medical treatment may cause
negative synergetic effects. Thus, it is noteworthy that mathematical modeling of
complex medical and psychological situations advises high sensitivity and cautious-
ness, in order to heal and help ill people. The complex system approach cannot ex-
plain to us what life is. But it can show us how complex and sensitive life is. Thus,
it can help us to become aware of the value of our life.

But what about the value of our life if it is computable? One of the most es-
sential insights of this book is that the dynamics of nature and society are not only
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characterized by nonlinearity and chaos, but by randomness, too. Only in random-
ness can human free will have a real chance [9.25]. In the completely deterministic
and computational world of a mechanical nature, Kant had to postulate a transcen-
dental world in order to make free will, ethical duties, and responsibility possible.
In random states of nature and society, the behavior of a system is not determined in
any way. Random dynamics can be generated even if all rules of interaction of the
elements in a dynamical system are known. In this case, the dynamics of a system
correspond to irreducible computation, which means that there is no chance of fore-
casting. The only way to learn anything about the future of the system is to perform
the dynamics. The macrobehavior of a brain, for example, could correspond to an
irreducible computation, although we know all the rules of synaptic interactions. In
this case, there is no shortcut or finite program for our life. We have to live our life
in order to experience it. It is amazing that human free will seems to be supported
just by the mathematical theory of computability.

Obviously, the theory of complex systems has consequences for the ethics of
politics, economics, ecology, medicine, and biological, computational, and informa-
tion sciences. These ethical consequences strongly depend on our knowledge about
complex nonlinear dynamics in nature and society, but they are not derived from the
principles of complex systems. Thus, we do not defend any kind of ethical natural-
ism or reductionism. Dynamical models of urban developments, global ecologies,
human organs, or information networks only deliver possible scenarios with dif-
ferent attractors. It is a question for us to evaluate which attractor we should prefer
ethically and help to realize by achievement of the appropriate conditions. Immanuel
Kant summarized the problems of philosophy in the three famous questions [9.26]:

The first question concerns epistemology with the possibilities and limitations
of our recognition. The theory of complex systems explains what we can know and
what we cannot know about nonlinear dynamics in nature and society. In general, the
question invites a demand for scientific research, in order to improve our knowledge
about complexity and evolution.

The second question concerns ethics and the evaluation of our actions. In gen-
eral, it invites a demand for sensitivity in dealing with highly sensitive complex
systems in nature and society. We should neither overact nor retire, because over-
action as well as retirement can push the system from one chaotic state to another.
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We should be both cautious and courageous, according to the conditions of nonlin-
earity and complexity in evolution. In politics we should be aware that any kind of
mono-causality may lead to dogmatism, intolerance, and fanaticism.

Kant’s last question “What may we hope?” concerns the Greatest Good, which
has traditionally been discussed as summum bonum in the philosophy of religion. At
first glance, it seems to be beyond the theory of complex systems, which only allows
us to derive global scenarios in the long run and short-term forecasts under particular
conditions. But when we consider the long sociocultural evolution of mankind, the
greatest good that people have struggled for has been the dignity of their personal
life. This does not depend on individual abilities, the degree of intelligence, or social
advantages acquired by the contingencies of birth. It has been a free act of human
self-determination in a stream of nonlinearity and randomness in history. We have
to project the Greatest Good on an ongoing evolution of increasing complexity.
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