INTRODUCCIÓN

Cuadro 1-2 (continuación)

Nivel	Descripción y ejemplos	Teoría y modelos
Sistemas socio- culturales	Poblaciones de organismos (in- cluyendo los humanos); comu- nidades determinadas por sim- bolos (culturas)	Leyes estadísticas y posible- mente dinámicas en dinámica de poblaciones, sociología, eco- nomia, posiblemente historia Comienzos de una teoría de los sistemas culturales
Sistemas simbólicos	Lenguaje, lógica, matemáticas, ciencias, artes, moral, etc.	Algoritmos de símbolos (p. ej. matemáticas, gramática); «reglas del juego» como en artes visuales, música, etc.

Nota: Este repaso es impresionista e intuitivo y no aspira al rigor lógico. Por regla general, los niveles superiores presuponen los inferiores (p. ej. los fenómenos de la vida presuponen los del nivel fisicoquímico, los fenómenos socioculturales el nivel de la actividad humana, etc.), pero la relación entre niveles requiere aclaración en cada caso (cf. problemas como el del sistema abierto y el código genético como aparentes requisitos previos para la «vida», la relación entre sistemas «conceptuales» y «reales», etc.). En este sentido, la lista insinúa tanto los limites del reduccionismo como los vacios en el conocimiento actual.

II. El significado de la teoría general de los sistemas

En pos de una teoría general de los sistemas

La ciencia moderna se caracteriza por la especialización siempre creciente, impuesta por la inmensa cantidad de datos, la complejidad de las técnicas y de las estructuras teóricas dentro de cada campo. De esta manera, la ciencia está escindida en innumerables disciplinas que sin cesar generan subdisciplinas nuevas. En consecuencia, el fisico, el biólogo, el psicólogo y el científico social están, por así decirlo, encapsulados en sus universos privados, y es difícil que pasen palabras de uno de estos compartimientos a otro.

A ello, sin embargo, se opone otro notable aspecto. Al repasar la evolución de la ciencia moderna topamos con un fenómeno sorprendente: han surgido problemas y concepciones similares en campos muy distintos, independientemente.

La meta de la física clásica era a fin de cuentas resolver los fenómenos naturales en un juego de unidades elementales gobernadas por leyes «ciegas» de la naturaleza. Esto lo expresaba el ideal del espíritu laplaciano que, a partir de la posición y momento de sus partículas, puede predecir el estado del universo en cualquier momento. Esta visión mecanicista no se alteró —antes bien, se reforzó—cuando en la física las leyes deterministas fueron reemplazadas por leyes estadísticas. De acuerdo con la derivación por Boltzmann del segundo principio de la termodinámica, los acontecimientos físicos se dirigen hacia estados de máxima probabilidad, de suerte que las leyes físicas son esencialmente «leyes del desorden», fruto de acontecimientos desordenados, estadísticos. Sin

embargo, en contraste con esta visión mecanicista han aparecido en las varias ramas de la física moderna problemas de totalidad. interacción dinámica y organización. Con la relación de Heisenberg y la física cuántica se hizo imposible resolver los fenómenos en acontecimientos locales; surgen problemas de orden y organización, trátese de la estructura de los átomos, la arquitectura de las proteínas o los fenómenos de interacción en termodinámica. Parecidamente la biología, a la luz, mecanicista, veía su meta en la fragmentación de los fenómenos vitales en entidades atómicas y procesos parciales. El organismo vivo era descompuesto en células, sus actividades en procesos fisiológicos y por último fisicoquímicos, el comportamiento en reflejos condicionados y no condicionados, el sustrato de la herencia en genes discretos, y así sucesivamente. En cambio, la concepción organísmica es básica para la biología moderna. Es necesario estudiar no sólo partes y procesos aislados, sino también resolver los problemas decisivos hallados en la organización y el orden que los unifican, resultantes de la interacción dinámica de partes y que hacen el diferente comportamiento de éstas cuando se estudian aisladas o dentro del todo. Propensiones parecidas se manifestaron en psicología. En tanto que la clásica psicología de la asociación trataba de resolver fenómenos mentales en unidades elementales - átomos psicológicos se diria-, tales como sensaciones elementales, la psicología de la Gestalt reveló la existencia y la primacía de todos psicológicos que no son sumas de unidades elementales y que están gobernados por leyes dinámicas. Finalmente, en las ciencias sociales el concepto de sociedad como suma de individuos a modo de átomos sociales --el modelo del hombre económico-- fue sustituido por la inclinación a considerar la sociedad, la economía, la nación, como un todo superordinado a sus partes. Esto trae consigo los grandes problemas de la economia planeada o la deificación de la nación y el Estado, pero también refleja nuevos modos de pensar.

Este paralelismo de principios cognoscitivos generales en diferentes campos es aun más impresionante cuando se tiene en cuenta que se dieron independientemente, sin que casi nunca interviniera nada de la labor e indagación en campos aparte.

Hay otro aspecto importante de la ciencia moderna. Hasta no hace mucho la ciencia exacta, el corpus de las leyes de la naturaleza, coincidía casi del todo en la física teórica. Pocos intentos de enunciar leyes exactas en terrenos no físicos han merecido reconocimiento.

No obstante, la repercusión y el progreso de las ciencias biológicas, de la conducta y sociales parecerían imponer un ensanchamiento de nuestros esquemas conceptuales a fin de dar cabida a sistemas de leyes en campos donde no es suficiente o posible la aplicación de la física.

Semejante inclinación hacia teorías generalizadas es patente en muchos campos y de diversas maneras. Partiendo de la labor précursora de Lotka y Volterra, p. ej., se ha desarrollado una compleja teoría de la dinámica de las poblaciones, la lucha por la existencia y los equilibrios biológicos. La teoría opera con nociones biológicas tales como individuo, especie, coeficientes de competencia y demás. Un procedimiento parecido se aplica en economía cuantitativa y econometría. Los modelos y familias de ecuaciones aplicadas en esta última se asemejan a los de Lotka o, por decirlo todo, a los de la cinética química, pero el modelo de entidades y fuerzas interactuantes ocupa otro nivel. Por tomar otro ejemplo: los organismos vivos son en el fondo sistemas abiertos, es decir, sistemas que intercambian materia con el medio circundante. La fisica y la fisicoquímica ordinarias se ocupan de sistemas cerrados, y apenas en años recientes ha sido ampliada la teoría para incluir procesos irreversibles, sistemas abiertos y estados de desequilibrio. Sin embargo, si deseamos aplicar el modelo de los sistemas abiertos -digamos— a los fenómenos del crecimiento animal, automáticamente llegamos a una generalización de la teoría, referente no ya a unidades físicas sino biológicas. En otras palabras, estamos ante sistemas generalizados. Lo mismo pasa en los campos de la cibernética y la teoria de la información, que han merecido tanto interés en los pasados años.

Así, existen modelos, principios y leyes aplicables a sistemas generalizados o a sus subclases, sin importar su particular género, la naturaleza de sus elementos componentes y las relaciones o «fuerzas» que imperen entre ellos. Parece legitimo pedir una teoria no ya de sistemas de clase más o menos especial, sino de principios universales aplicables a los sistemas en general.

De aqui que adelantemos una nueva disciplina llamada Teoria general de los sistemas. Su tema es la formulación y derivación de aquellos principios que son válidos para los «sistemas» en general.

El sentido de esta disciplina puede ser circunscrito como sigue. La física se ocupa de sistemas de diferentes niveles de generalidad. Se dilata desde sistemas bastante especiales —como los que aplica

el ingeniero a la construcción de un puente o una máquinahasta leves especiales de disciplinas físicas como la mecánica o la óptica, y hasta leyes de gran generalidad, como los principios de la termodinámica, aplicables a sistemas de naturaleza intrínsecamente diferente --mecánicos, calóricos, químicos o lo que sean. Nada prescribe que tengamos que desembocar en los sistemas tradicionalmente tratados por la física. Podemos muy bien buscar principios aplicables a sistemas en general, sin importar que sean de naturaleza física, biológica o sociológica. Si planteamos esto y definimos bien el sistema, hallaremos que existen modelos, principios y leves que se aplican a sistemas generalizados, sin importar su particular género, elementos y «fuerzas» participantes.

Consecuencia de la existencia de propiedades generales de sistemas es la aparición de similaridades estructurales o isomorfismos en diferentes campos. Hay correspondencias entre los principios que rigen el comportamiento de entidades que son intrínsecamente muy distintas. Por tomar un ejemplo sencillo, se puede aplicar una ley exponencial de crecimiento a ciertas células bacterianas, a poblaciones de bacterias, de animales o de humanos, y al progreso de la investigación científica medida por el número de publicaciones de genética o de ciencia en general. Las entidades en cuestión, bacterias, animales, gente, libros, etc., son completamente diferentes, y otro tanto ocurre con los mecanismos causales en cuestión. No obstante, la ley matemática es la misma. O tómense los sistemas de ecuaciones que describen la competencia entre especies animales y vegetales en la naturaleza. Se da el caso de que iguales sistemas de ecuaciones se aplican en ciertos campos de la fisicoquímica y de la economía. Esta correspondencia se debe a que las entidades consideradas pueden verse, en ciertos aspectos, como «sistemas», o sea complejos de elementos en interacción. Que los campos mencionados, y otros más, se ocupen de «sistemas», es cosa que acarrea correspondencia entre principios generales y hasta entre leyes especiales, cuando se corresponden las condiciones en los fenómenos considerados.

Conceptos, modelos y leyes parecidos surgen una y otra vez en campos muy diversos, independientemente y fundándose en hechos del todo distintos. En muchas ocasiones fueron descubiertos principios idénticos, porque quienes trabajan en un territorio no se percataban de que la estructura teórica requerida estaba va muy adelantada en algún otro campo. La teoría general de los sistemas contará mucho en el afán de evitar esa inútil repetición de esfuerzos.

También aparecen isomorfismos de sistemas en problemas recalcitrantes al análisis cuantitativo pero, con todo, de gran interés intrínseco. Hay, p. ej., isomorfismos entre sistemas biológicos y «epiorganismos» (Gerard), como las comunidades animales y las sociedades humanas. ¿Qué principios son comunes a los varios niveles de organización y pueden, así, ser trasladados de un nivel a otro, y cuáles son específicos, de suerte que su traslado conduzca a falacias peligrosas? /Pueden las sociedades y civilizaciones ser consideradas como sistemas?

Se diria, entonces, que una teoría general de los sistemas sería un instrumento útil al dar, por una parte, modelos utilizables y trasferibles entre diferentes campos, y evitar, por otra, vagas analogías que a menudo han perjudicado el progreso en dichos campos.

Hay, sin embargo, otro aspecto aun más importante de la teoría general de los sistemas. Puede parafrasearse mediante una feliz formulación debida al bien conocido matemático y fundador de la teoría de la información, Warren Weaver. La física clásica, dijo éste, tuvo gran éxito al desarrollar la teoría de la complejidad no organizada. Por ei., el comportamiento de un gas es el resultado de los movimientos desorganizados, e imposibles de seguir aisladamente, de innumerables moléculas; en conjunto, lo rigen las leyes de la termodinámica. La teoría de la complejidad no organizada se arraiga a fin de cuentas en las leyes del azar y la probabilidad y en la segunda ley de la termodinámica. En contraste, hoy el problema fundamental es el de la complejidad organizada. Conceptos como los de organización, totalidad, directividad, teleología y diferenciación son ajenos a la física habitual. Sin embargo, asoman a cada paso en las ciencias biológicas, del comportamiento y sociales, y son de veras indispensables para vérselas con organismos vivientes o grupos sociales. De esta manera, un problema fundamental planteado a la ciencia moderna es el de una teoría general de la organización. La teoría general de los sistemas es capaz en principio de dar definiciones exactas de semejantes conceptos y, en casos apropiados, de someterlos a análisis cuantitativo.

Hemos indicado brevemente el sentido de la teoría general de los sistemas, y ayudará a evitar malos entendidos señalar ahora lo que no es. Se ha objetado que la teoría de los sistemas no quiere decir nada más que el hecho trivial de que matemáticas

de alguna clase son aplicables a diferentes clases de problemas. Por ej., la ley del crecimiento exponencial es aplicable a muy diferentes fenómenos, desde la desintegración radiactiva hasta la extinción de poblaciones humanas con insuficiente reproducción. Así es, sin embargo, porque la fórmula es una de las más sencillas ecuaciones diferenciales y por ello se puede aplicar a cosas muy diferentes. O sea que si se presentan las llamadas leyes isomorfas del crecimiento en muy diversos procesos, no es esto más significativo que el hecho de que la aritmética elemental sea aplicable a todos los objetos contables, que 2 y 2 sean 4, sin importar que se trate de manzanas, átomos o galaxias.

La respuesta es la siguiente. No sólo en el ejemplo citado como simple ilustración, sino en el desenvolvimiento de la teoría de los sistemas, la cuestión no es la aplicación de expresiones matemáticas bien conocidas. Antes bien, son planteados problemas novedosos y que en parte parecen lejos de estar resueltos. Según mencionamos, el método de la ciencia clásica era de lo más apropiado para fenómenos que pueden descomponerse en cadenas causales aisladas o que son consecuencia estadística de un número «infinito» de procesos aleatorios, como pasa con la mecánica estadística, el segundo principio de la termodinámica y todas las leyes que de él emanan. Sin embargo, los modos clásicos de pensamiento fracasan en el caso de la interacción entre un número grande, pero limitado, de elementos o procesos. Aquí surgen los problemas circunscritos por nociones como las de totalidad, organización y demás, que requieren nuevos modos de pensamiento matemático.

Otra objeción hace hincapié en el peligro de que la teoría general de los sistemas desemboque en analogías sin sentido. Este riesgo existe, en efecto. Así, es una idea difundida considerar el Estado o la nación como organismo en un nivel superordinado. Pero semejante teoría constituiria el fundamento de un Estado totalitario, dentro del cual el individuo humano aparece como célula insignificante de un organismo o como obrera intrascendente en una colmena.

La teoría general de los sistemas no persigue analogias vagas y superficiales. Poco valen, ya que junto a las similitudes entre fenómenos siempre se hallan también diferencias. El isomorfismo que discutimos es más que mera analogía. Es consecuencia del hecho de que, en ciertos aspectos, puedan aplicarse abstracciones y modelos conceptuales coincidentes a fenómenos diferentes. Sólo se aplicarán

las leyes de sistemas con mira a tales aspectos. Esto no difiere del procedimiento general en la ciencia. Es una situación como la que se puede dar cuando la ley de la gravitación se aplica a la manzana de Newton, el sistema planetario y los fenómenos de las mareas. Quiere decir que de acuerdo con ciertos aspectos limitados, un sistema teórico, el de la mecánica, es válido; no se pretende que haya particular semejanza entre las manzanas, los planetas y los océanos desde otros muchos puntos de vista.

Una objeción más pretende que la teoría de los sistemas carece de valor explicativo. Por ej., algunos aspectos de la intencionalidad orgánica, como lo que se llama equifinalidad de los procesos del desarrollo (p. 40), son susceptibles de interpretación con la teoría de los sistemas. Sin embargo, hoy por hoy nadie está en condiciones de definir en detalle los procesos que llevan de un zigoto animal a un organismo, con su miriada de células, órganos y funciones muy complicadas.

Consideraremos aquí que hay grados en la explicación científica, y que en campos complejos y teóricamente poco desarrollados tenemos que conformarnos con lo que el economista Hayek llamó con justicia «explicación en principio». Un ejemplo indicará el sentido de esto.

La economía teórica es un sistema altamente adelantado que suministra complicados modelos para los procesos en cuestión. Sin embargo, por regla general los profesores de economía no son millonarios. Dicho de otra manera, saben explicar bien los fenómenos económicos «en principio», pero no llegan a predecir fluctuaciones de la bolsa con respecto a determinadas participaciones o fechas. Con todo, la explicación en principio es mejor que la falta de explicación. Si se consigue insertar los parámetros necesarios, la explicación «en principio» en términos de teoría de los sistemas pasa a ser una teoría análoga en estructura a las de la fisica.

Metas de la teoria general de los sistemas

Tales consideraciones se resumen así.

En varias disciplinas de la ciencia moderna han ido surgiendo concepciones y puntos de vista generales semejantes. En tanto que antes la ciencia trataba de explicar los fenómenos observables reduciéndolos al juego de unidades elementales investigables independientemente una de otra, en la ciencia contemporánea aparecen actitudes

que se ocupan de lo que un tanto vagamente se llama «totalidad», es decir, problemas de organización, fenómenos no descomponibles en acontecimientos locales, interacciones dinámicas manifiestas en la diferencia de conducta de partes aisladas o en una configuración superior, etc.; en una palabra, «sistemas» de varios órdenes, no comprensibles por investigación de sus respectivas partes aisladas. Concepciones y problemas de tal naturaleza han aparecido en todas las ramas de la ciencia, sin importar que el objeto de estudio sean cosas inanimadas, organismos vivientes o fenómenos sociales. Esta correspondencia es más llamativa en vista de que cada ciencia siguió su curso independiente, casi sin contacto con las demás y basándose todas en hechos diferentes y filosofias contradictorias. Esto indica un cambio general en la actitud y las concepciones científicas.

No sólo se parecen aspectos y puntos de vista generales en diferentes ciencias; con frecuencia hallamos leyes formalmente idénticas o isomorfas en diferentes campos. En muchos casos, leyes isomorfas valen para determinadas clases o subclases de «sistemas», sin importar la naturaleza de las entidades envueltas. Parece que existen leyes generales de sistemas aplicables a cualquier sistema de determinado tipo, sin importar las propiedades particulares del sistema ni de los elementos participantes.

Estas consideraciones conducen a proponer una nueva disciplina científica, que llamamos teoría general de los sistemas. Su tema es la formulación de principios válidos para «sistemas» en general, sea cual fuere la naturaleza de sus elementos componentes y las relaciones o «fuerzas» reinantes entre ellos.

De esta suerte, la teoria general de los sistemas es una ciencia general de la «totalidad», concepto tenido hasta hace poco por vago, nebuloso y semimetafisico. En forma elaborada sería una disciplina lógico-matemática, puramente formal en sí misma pero aplicable a las varias ciencias empíricas. Para las ciencias que se ocupan de «todos organizados», tendría significación análoga a la que disfrutó la teoría de la probabilidad para ciencias que se las ven con «acontecimientos aleatorios»; la probabilidad es también una disciplina matemática formal aplicable a campos de lo más diverso, como la termodinámica, la experimentación biológica y médica, la genética, las estadísticas para seguros de vida, etc.

Esto pone de manifiesto las metas principales de la teoría general de los sistemas:

- (1) Hay una tendencia general hacia la integración en las varias ciencias, naturales y sociales.
- (2) Tal integración parece girar en torno a una teoría general de los sistemas.
- (3) Tal teoria pudiera ser un recurso importante para buscar una teoria exacta en los campos no fisicos de la ciencia.
- (4) Al elaborar principios unificadores que corren «verticalmente» por el universo de las ciencias, esta teoría nos acerca a la meta de la unidad de la ciencia.
- (5) Esto puede conducir a una integración, que hace mucha falta, en la instrucción científica.

Es oportuna una observación acerca de la delimitación de la teoría aquí discutida. El nombre y el programa de una teoría general de los sistemas los introdujo quien esto escribe hace ya años. Resultó, sin embargo, que no pocos investigadores de varios campos habían llegado a conclusiones y enfoques similares. Se propone, pues, conservar el nombre, que va imponiéndose en el uso general, aunque fuera sólo como rótulo conveniente.

De buenas a primeras, da la impresión de que la definición de sistemas como «conjuntos de elementos en interacción» fuera tan general y vaga que no hubiera gran cosa que aprender de ella. No es asi. Por ej., pueden definirse sistemas merced a ciertas familias de ecuaciones diferenciales, y si, como es costumbre en el razonamiento matemático, se introducen condiciones más específicas, aparecen muchas propiedades importantes de los sistemas en general y de casos más especiales (cf. capítulo III).

El enfoque matemático adoptado en la teoría general de los sistemas no es el único posible ni el más general. Hay otra serie de enfoques modernos afines, tales como la teoría de la información, la cibernética, las teorías de los juegos, la decisión y las redes, los modelos estocásticos, la investigación de operaciones —por sólo mencionar los más importantes—; sin embargo, el hecho de que las ecuaciones diferenciales cubran vastas áreas en las ciencias físicas, biológicas, económicas, y probablemente también las ciencias del comportamiento, las hace vía apropiada de acceso al estudio de los sistemas generalizados.

Pasaré a ilustrar la teoria general de los sistemas con algunos ejemplos.

Sistemas cerrados y abiertos: limitaciones de la física ordinaria

Mi primer ejemplo será el de los sistemas cerrados y abiertos. La física ordinaria sólo se ocupa de sistemas cerrados, de sistemas que se consideran aislados del medio circundante. Así, la fisicoquímica nos habla de las reacciones, de sus velocidades, y de los equilibrios químicos que acaban por establecerse en un recipiente cerrado donde se mezclan cierto número de sustancias reaccionantes. La termodinámica declara expresamente que sus leyes sólo se aplican a sistemas cerrados. En particular, el segundo principio afirma que, en un sistema cerrado, cierta magnitud, la entropía, debe aumentar hasta el máximo, y el proceso acabará por detenerse en un estado de equilibrio. Puede formularse el segundo principio de diferentes modos, según uno de los cuales la entropía es medida de probabilidad, y así un sistema cerrado tiende al estado de distribución más probable. Sin embargo, la distribución más probable de una mezcla —digamos— de cuentas de vidrio rojas y azules, o de moléculas dotadas de velocidades diferentes, es un estado de completo desorden: todas las cuentas rojas por un lado y todas las azules por otro, o bien, en un espacio cerrado, todas las moléculas veloces -o sea de alta temperatura— a la derecha, y todas las lentas —baia temperatura— a la izquierda, son estados de cosas altamente improbables. O sea que la tendencia hacia la máxima entropía o la distribución más probable es la tendencia al máximo desorden.

Sin embargo, encontramos sistemas que, por su misma naturaleza y definición, no son sistemas cerrados. Todo organismo viviente es ante todo un sistema abierto. Se mantiene en continua incorporación y eliminación de materia, constituyendo y demoliendo componentes, sin alcanzar, mientras la vida dure, un estado de equilibrio químico y termodinámico, sino manteniéndose en un estado llamado uniforme (steady) que difiere de aquél. Tal es la esencia misma de ese fenómeno fundamental de la vida llamado metabolismo, los procesos químicos dentro de las células vivas. ¿Y entonces? Es obvio que las formulaciones habituales de la física no son en principio aplicables al organismo vivo qua sistema abierto y en estado uniforme, y bien podemos sospechar que muchas características de los sistemas vivos que resultan paradójicas vistas según las leyes de la física son consecuencia de este hecho.

No ha sido sino hasta años recientes cuando hemos presenciado una expansion de la física orientada a la inclusión de sistemas abiertos. Esta teoria ha aclarado muchos fenómenos oscuros en física y biología, y ha conducido asimismo a importantes conclusiones generales, de las cuales sólo mencionaré dos.

La primera es el principio de equifinalidad. En cualquier sistema cerrado, el estado final está inequivocamente determinado por las condiciones iniciales: p. ej., el movimiento en un sistema planetario, donde las posiciones de los planetas en un tiempo t están inequívocamente determinadas por sus posiciones en un tiempo t_0 . O, en un equilibrio químico, las concentraciones finales de los compuestos reaccionantes depende naturalmente de las concentraciones iniciales. Si se alteran las condiciones iniciales o el proceso, el estado final cambiará también. No ocurre lo mismo en los sistemas abiertos. En ellos puede alcanzarse el mismo estado final partiendo de diferentes condiciones iniciales v por diferentes caminos. Es lo que se llama equifinalidad, y tiene significación para los fenómenos de la regulación biológica. Quienes estén familiarizados con la historia de la biología recordarán que fue precisamente la equifinalidad la que llevó al biólogo alemán Driesch a abrazar el vitalismo, o sea la doctrina de que los fenómenos vitales son inexplicables en términos de la ciencia natural. La argumentación de Driesch se basaba en experimentos acerca de embriones tempranos. El mismo resultado final —un organismo normal de erizo de mar— puede proceder de un zigoto completo, de cada mitad de un zigoto de estos, o del producto de fusión de dos zigotos. Lo mismo vale para embriones de otras muchas especies, incluyendo el hombre, donde los gemelos idénticos provienen de la escisión de un zigoto. La equifinalidad, de acuerdo con Driesch, contradice las leyes de la física y sólo puede deberse a un factor vitalista animoide que gobierne los procesos previendo la meta: el organismo normal por constituir. Sin embargo, puede demostrarse que los sistemas abiertos. en tanto alcancen un estado uniforme, deben exhibir equifinalidad, con lo cual desaparece la supuesta violación de las leves físicas (cf. pp. 136 s).

Otro aparente contraste entre la naturaleza inanimada y la animada es lo que fue descrito a veces como violenta contradicción entre la degradación kelviniana y la evolución darwiniana, entre la ley de la disipación en fisica y la ley de la evolución en biologia. De acuerdo con el segundo principio de la termodinámica, la tendencia general de los acontecimientos en la naturaleza fisica apunta a estados de máximo desorden y a la igualación de diferencias,

con la llamada muerte térmica del universo como perspectiva final, cuando toda la energía quede degradada como calor uniformemente distribuido a baja temperatura, y los procesos del universo se paren. En contraste, el mundo vivo exhibe, en el desarrollo embrionario y en la evolución, una transición hacia un orden superior, heterogeneidad y organización. Pero, sobre la base de la teoría de los sistemas abiertos, la aparente contradicción entre entropía y evolución desaparece. En todos los procesos irreversibles la entropía debe aumentar. Por tanto, el cambio de entropía en sistemas cerrados es siempre positivo; hay continua destrucción de orden. En los sistemas abiertos, sin embargo, no sólo tenemos producción de entropía debida a procesos irreversibles, sino también entrada de entropía que bien puede ser negativa. Tal es el caso en el organismo vivo, que importa complejas moléculas ricas en energía libre. Así, los sistemas vivos, manteniéndose en estado uniforme, logran evitar el aumento de entropía y hasta pueden desarrollarse hacia estados de orden y organización crecientes.

A partir de estos ejemplos es de imaginarse el alcance de la teoría de los sistemas abiertos. Entre otras cosas, muestra que muchas supuestas violaciones de leyes fisicas en la naturaleza no existen o, mejor dicho, que no se presentan al generalizar la teoría física. En una versión generalizada, el concepto de sistemas abiertos puede ser aplicado a niveles no físicos. Son ejemplos su uso en ecología, y la evolución hacia la formación de clímax (Whittacker); en psicología, donde los «sistemas neurológicos» se han considerado «estructuras dinámicas abiertas» (Krech): en filosofía, donde la tendencia hacia puntos de vista «trans-accionales» opuestos a los «auto-accionales» e «inter-accionales» corresponde de cerca al modelo de sistema abierto (Bentley).

Información y entropía

Otra via que está vinculada de cerca a la teoría de los sistemas es la moderna teoría de la comunicación. Se ha dicho a menudo que la energía es la moneda de la física, como pasa con los valores económicos, expresados en dólares o pesos. Hay, sin embargo, algunos campos de la física y la tecnología donde esta moneda no es muy aceptable. Tal ocurre en el campo de la comunicación, el cual, en vista de la multiplicación de teléfonos, radios, radares,

máquinas computadoras, servomecanismos y otros artefactos, ha hecho nacer una nueva rama de la fisica.

La noción general en teoría de la comunicación es la de información. En muchos casos la corriente de información corresponde a una corriente de energía; p. ej., si ondas luminosas emitidas por algunos objetos llegan al ojo o a una celda fotoeléctrica, provocan alguna reacción del organismo o actúan sobre una máquina. y así portan información. Es fácil, sin embargo, dar ejemplos en los cuales la información fluye en sentido opuesto a la energía, o en los que es transmitida información sin que corran energía o materia. El primer caso se da en un cable telegráfico, por el que va corriente en una dirección, pero es posible enviar información, un mensaje, en una u otra dirección, interrumpiendo la corriente en un punto y registrando la interrupción en otro. A propósito del segundo caso, piénsese en las puertas automáticas con sistema fotoeléctrico: la sombra, la suspensión de la energía luminosa, informa a la celda de que alguien entra, y la puerta se abre. De modo que la información, en general, no es expresable en términos de energía.

Hay, sin embargo, otra manera de medir la información, a saber: en términos de decisiones. Tomemos el juego de las veinte preguntas, en el cual hay que averiguar de qué objeto se trata, respondiendo sólo «sí» o «no». La cantidad de información trasmitida en una respuesta representa una decisión entre dos posibilidades, p. ej., «animal» o «no animal». Con dos preguntas es posible decidir entre cuatro posibilidades, p. e., «mamífero»—«no mamífero», o «planta con flores-«planta sin flores». Con tres respuestas se trata de una decisión entre ocho, etc. Así, el logaritmo de base 2 de las decisiones posibles puede ser usado como medida de información, siendo la unidad la llamada unidad binaria o bit. La información contenida en dos respuestas es log₂ 4 = 2 bits, en tres respuestas, $\log_2 8 = 3$ bits, etc. Esta medida de la información resulta ser similar a la de la entropía, o más a la de la entropia negativa, puesto que la entropia es definida como logaritmo de la probabilidad. Pero la entropia, como ya sabemos, es una medida del desorden; de ahí que la entropía negativa o información sea una medida del orden o de la organización, ya que la última, en comparación con la distribución al azar, es un estado improbable.

Otro concepto céntrico de la teoría de la comunicación y el control es el de retroalimentación. El siguiente es un esquema sencillo de retroalimentación (Fig. 2.1). El sistema comprende, primero, un receptor u «órgano sensorio», ya sea una celda fotoeléctrica, una pantalla de radar, un termómetro o un órgano sensorio en sentido biológico. En los dispositivos tecnológicos, el mensaje puede ser una corriente débil; o en un organismo vivo estar representado por la conducción nerviosa, etc.

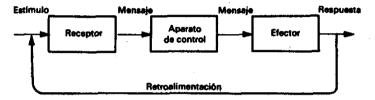


Fig. 2.1. Esquema sencillo de retroalimentación.

Hay luego un centro que recombina los mensajes que llegan y los transmite a un efector, consistente en una máquina como un electromotor, un carrete de calentamiento o solenoide, o un músculo que responde al mensaje que llega, de tal manera que haya considerable emisión de energía. Por último, el funcionamiento del efector está empalmado al receptor, lo cual hace que el sistema se autorregule, o sea que garantiza la estabilización o la dirección de acción.

Los dispositivos de retroalimentación se emplean mucho en la tecnología moderna para estabilizar determinada acción, como en los termostatos o los receptores de radio, o la dirección de acciones hacia determinada meta: las desviaciones se retroalimentan, como información, hasta que se alcanza la meta o el blanco. Tal es el caso de los proyectiles autodirigidos que buscan el blanco, de los sistemas de control de cañones antiaéreos, de los sistemas de pilotaje de buques y de otros de los llamados servomecanismos.

Hay, por cierto, gran número de fenómenos biológicos que corresponden al modelo de retroalimentación. Está, primero, lo que se llama homeostasia, o mantenimiento del equilibrio en el organismo vivo, cuyo prototipo es la termorregulación en los animales de sangre caliente. El enfriamiento de la sangre estimula ciertos centros cerebrales que «echan a andar» los mecanismos productores

de calor del cuerpo, y la temperatura de éste es registrada a su vez por aquellos centros, de manera que la temperatura es mantenida a nivel constante. Existen en el cuerpo mecanismos homeostáticos análogos que preservan la constancia de gran número de variables fisicoquímicas. Además, en el organismo humano y animal existen sistemas de retroalimentación comparables a los servomecanismos de la tecnología, que se encargan de la regulación de acciones. Si queremos alcanzar un lápiz, se envía al sistema nervioso central un informe acerca de la distancia que nos impidió llegar al lápiz en el primer intento; esta información es retroalimentada al sistema nervioso central para que el movimiento sea controlado hasta que se logre la meta.

Gran variedad de sistemas tecnológicos y de la naturaleza viviente siguen, pues, el esquema de retroalimentación, y es bien sabido que Norbert Wiener creó una nueva disciplina, llamada cibernética, para tratar estos fenómenos. La teoría aspira a mostrar que mecanismos de naturaleza retroalimentadora fundamentan el comportamiento teleológico o intencionado en las máquinas construidas por el hombre, así como en los organismos vivos y en los sistemas sociales.

Hay que tener presente, sin embargo, que el esquema de retroalimentación es de naturaleza bastante especial. Presupone disposiciones estructurales del tipo mencionado. Pero hay muchas regulaciones en el organismo vivo que tienen naturaleza del todo distinta, a saber, aquellos en que se alcanza el orden por interacción dinámica de procesos. Recuérdense, p. ej., las regulaciones embrionarias, que restablecen el todo a partir de las partes en procesos equifinales. Puede demostrarse que las regulaciones primarias en los sistemas orgánicos, o sea aquellas que son más fundamentales y primitivas en el desarrollo embrionario así como en la evolución, residen en la interacción dinámica. Se basan en el hecho de que el organismo vivo sea un sistema abierto que se mantiene en estado uniforme o se acerca a él. Superpuestas están las regulaciones que podemos llamar secundarias y que son controladas por disposiciones fijas, especialmente del tipo de la retroalimentación. Esta situación es consecuencia de un principio general de organización que podría llamarse mecanización progresiva. Al principio los sistemas —biológicos, neurológicos, psicológicos o sociales— están gobernados por interacción dinámica entre sus componentes; más tarde se establecen disposiciones fijas y condiciones de restricción que hacen más eficiente el sistema y sus partes, pero, de paso, disminuyen gradualmente

su equipotencialidad hasta acabar por abolirla. De modo que la dinámica es el aspecto más amplio, va que siempre es posible llegar, por leyes generales de sistemas, hasta la función como de máquina, imponiendo condiciones adecuadas de restricción, pero no es posible lo contrario.

Causalidad y teleología

Otro punto que desearía mencionar es el cambio en la imagen científica del mundo durante las últimas décadas. En el punto de vista llamado mecanicista, nacido de la física clásica del siglo xix, el juego sin concierto de los átomos, regidos por las leyes inexorables de la causalidad, generaba todos los fenómenos del mundo, inanimado, viviente y mental. No quedaba lugar para ninguna direccionalidad, orden o telos. El mundo de los organismos aparecía como producto del azar, amasado por el juego sin sentido de mutaciones azarosas y selección; el mundo mental como un epifenómeno curioso y bastante inconsecuente de los acontecimientos materiales.

La única meta de la ciencia parecía ser analítica: la división de la realidad en unidades cada vez menores y el aislamiento de líneas causales separadas. Asi, la realidad física era descompuesta en puntos de masa o átomos, el organismo vivo en células, el comportamiento en refleios, la percepción en sensaciones puntuales, etc. En correspondencia, la causalidad tenía esencialmente un sentido: nuestro sol atrae a un planeta en la mecánica newtoniana, un gene en el óvulo fertilizado responde de tal o cual carácter heredado, una clase de bacteria produce tal o cual enfermedad, los elementos mentales están alineados, como las cuentas de un collar, por la ley de la asociación. Recuérdese la famosa tabla de las categorías kantianas, que intenta sistematizar las nociones fundamentales de la ciencia clásica: es sintomático que nociones de interacción y de organización figurasen sólo para llenar húecos. o no apareciesen de plano.

Puede tomarse como característica de la ciencia moderna el que este esquema de unidades aislables actuantes según causalidad unidireccional hava resultado insuficiente. De ahí la aparición, en todos los campos de la ciencia, de nociones como las de totalidad, holismo, organismo, Gestalt, etc., que vienen a significar todas que, en última instancia, debemos pensar en términos de sistemas de elementos en interacción mutua.

Análogamente, las nociones de teleología y directividad parecían caer fuera del alcance de la ciencia y ser escenario de misteriosos agentes sobrenaturales o antropomorfos —o bien tratarse de un seudoproblema, intrinsecamente ajeno a la ciencia, mera provección mal puesta de la mente del observador en una naturaleza gobernada por leyes sin propósito. Con todo, tales aspectos existen, y no puede concebirse un organismo vivo —no se diga el comportamiento y la sociedad humanos— sin tener en cuenta lo que, variada y bastante vagamente, se llama adaptabilidad, intencionalidad, persecución de metas v cosas semejantes.

Característico del presente punto de vista es que estos aspectos sean tomados en serio, como problemas legítimos para la ciencia; y también estamos en condiciones de procurar modelos que simulen tal comportamiento.

Ya han sido mencionados dos de ellos. Uno es la equifinalidad, la tendencia a un estado final característico a partir de diferentes estados iniciales y por diferentes caminos, fundada en interacción dinámica en un sistema abierto que alcanza un estado uniforme: otro, la retroalimentación, el mantenimiento homeostático de un estado característico o la búsqueda de una meta, basada en cadenas causales circulares y en mecanismos que devuelven información acerca de desviaciones con respecto al estado por mantener o la meta por alcanzar. Otro modelo de comportamiento adaptativo. un «diseño para un cerebro», es creación de Ashby, quien partió. dicho sea de paso, de las mismas definiciones y ecuaciones matemáticas para un sistema general que había usado el presente autor. Ambos llevaron adelante sus sistemas independientemente y, siguiendo diferentes intereses, arribaron a distintos teoremas y conclusiones. El modelo de la adaptabilidad de Ashby es, a grandes rasgos, el de funciones escalonadas que definen un sistema, funciones, pues, que al atravesar cierto valor crítico, saltan a una nueva familia de ecuaciones diferenciales. Esto significa que, habiendo pasado un estado crítico, el sistema emprende un nuevo modo de comportamiento. Así, por medio de funciones escalonadas, el sistema exhibe comportamiento adaptativo según lo que el biólogo llamaría ensayo y error: prueba diferentes caminos y medios, y a fin de cuentas se asienta en un terreno donde ya no entre en conflicto con valores críticos del medio circundante. Ashby incluso construyó una máquina electromagnética, el homeóstato, que representa un sistema así, que se adapta por ensavo y error.

No voy a discutir los méritos y limitaciones de estos modelos de comportamiento teleológico o dirigido. Lo que sí debe ser subrayado es el hecho de que el comportamiento teleológico dirigido hacia un estado final o meta característicos no sea algo que esté más allá de las lindes de la ciencia natural, ni una errada concepción antropomorfa de procesos que, en sí mismos, no tienen dirección y son accidentales. Más bien es una forma de comportamiento definible en términos científicos y cuyas condiciones necesarias y mecanismos posibles pueden ser indicados

¿Qué es organización?

Consideraciones análogas son aplicables al concepto de organización. También ella era ajena al mundo mecanicista. El problema no se presentó en física clásica, en mecánica, electrodinámica, etc. Más aun, el segundo principio de la termodinámica apuntaba a la destrucción del orden como dirección general de los acontecimientos. Verdad es que las cosas son distintas en la física moderna. Un átomo, un cristal, una molécula, son organizaciones, como Whitehead no se cansaba de subrayar. En biología, los organismos son, por definición, cosas organizadas. Pero aunque dispongamos de una enorme cantidad de datos sobre la organización biológica, de la bioquímica y la citología a la histología y la anatomía; carecemos de una teoría de la organización biológica, de un modelo conceptual que permita explicar los hechos empíricos.

Características de la organización, trátese de un organismo vivo o de una sociedad, son nociones como las de totalidad, crecimiento, diferenciación, orden jerárquico, dominancia, control, competencia, etcétera.

Semejantes nociones no intervienen en la física corriente. La teoría de los sistemas está en plenas condiciones de vérselas con estos asuntos. Es posible definir tales nociones dentro del modelo matemático de un sistema; más aun, en ciertos aspectos pueden deducirse teorías detalladas que derivan los casos especiales a partir de supuestos generales. Un buen ejemplo es la teoría de los equilibrios biológicos, las fluctuaciones cíclicas, etc., iniciada por Lotka, Volterra, Gause y otros. Se da el caso de que la teoría biológica de Volterra y la teoría de la economía cuantitativa son isomorfas en muchos puntos.

Hay, sin embargo, muchos aspectos de organizaciones que no se prestan con facilidad a interpretación cuantitativa. A la ciencia natural no le es ajena esta dificultad. Así, la teoría de los equilibrios biológicos o la de la selección natural son campos muy desarrollados de la biología matemática, y nadie duda de su legitimidad, de que son correctas a rasgos generales y constituyen parte importante de la teoría de la evolución y la ecología. Sin embargo, no es fácil aplicarlas porque los parámetros escogidos, tales como el valor selectivo, el ritmo de destrucción y generación, etc., no son fáciles de medir. Tenemos así que conformarnos con una «explicación en principio», argumentación cualitativa que, con todo, no deja de conducir a consecuencias interesantes.

Como ejemplo de la aplicación de la teoría general de los sistemas a la sociedad humana mencionaremos un libro de Boulding intitulado The Organizational Revolution. Boulding parte de un modelo general de la organización y enuncia las que llama leves férreas. válidas para cualquier organización. Entre ellas están, p. ej., la ley malthusiana de que el incremento de población supera por regla general al de los recursos. Está, asimismo, la ley de las dimensiones óptimas de las organizaciones: mientras más crece una organización, más se alarga el camino para la comunicación, lo cual -y según la naturaleza de la organización- actúa como factor limitante y no permite a la organización crecer más allá de ciertas dimensiones críticas. De acuerdo con la ley de inestabilidad, muchas organizaciones no están en equilibrio estable sino que exhiben fluctuaciones cíclicas resultantes de la interacción entre subsistemas. Dicho sea de paso, esto probablemente podría tratarse en términos de la teoria de Volterra. La llamada primera lev de Volterra revela ciclos periódicos en poblaciones de dos especies, una de las cuales se alimenta de la otra. La importante ley del oligopolio afirma que, si hay organizaciones en competencia, la inestabilidad de sus relaciones, y con ello el peligro de fricción y conflictos, aumenta al disminuir el número de dichas organizaciones. Mientras sean relativamente pequeñas y numerosas, salen adelante en una especie de coexistencia, pero si quedan unas cuantas, o un par, como pasa con los colosales bloques políticos de hoy, los conflictos se hacen devastadores hasta el punto de la mutua destrucción. Es fácil multiplicar el número de tales teoremas generales. Bien pueden desarrollarse matemáticamente, lo cual ya ha sido hecho en algunos aspectos.

Teoría general de los sistemas y unidad de la ciencia

Concluiré estas observaciones con unas palabras acerca de las implicaciones generales de la teoría interdisciplinaria.

Ouizá pueda resumirse como sigue la función integradora de la teoría general de los sistemas. Hasta aquí se ha visto la unificación de la ciencia en la reducción de todas las ciencias a la física. en la resolución final de todos los fenómenos en acontecimientos físicos. Desde nuestro punto de vista, la unidad de la ciencia adquiere un aspecto más realista. Una concepción unitaria del mundo puede basarse no va en la esperanza -acaso fútil y de fijo rebuscadade reducir al fin y al cabo todos los niveles de la realidad al de la física, sino meior en el isomorfismo de las leves en diferentes campos. Hablando según lo que se ha llamado el modo «formal» -es decir, contemplando las construcciones conceptuales de la ciencia-, esto significa uniformidades estructurales en los esquemas que estamos aplicando. En lenguaje «material», significa que el mundo, o sea la totalidad de los acontecimientos observables, exhibe uniformidades estructurales que se manifiestan por rastros isomorfos de orden en los diferentes niveles o ámbitos.

. Llegamos con ello a una concepción que, en contraste con el reduccionismo, podemos denominar perspectivismo. No podemos reducir los niveles biológico, del comportamiento y social al nivel más bajo, el de las construcciones y leves de la física. Podemos, en cambio, hallar construcciones y tal vez leyes en los distintos niveles. Como dijo una vez Aldous Huxley, el mundo es un pastel de helado napolitano cuyos niveles -el físico, el biológico, el social y el moral - corresponden a las capas de chocolate, fresa y vainilla. La fresa no es reducible al chocolate —lo más que podemos decir es que quizás en última instancia todo sea vainilla, todo mente o espíritu. El principio unificador es que encontramos organización en todos los niveles. La visión mecanicista del mundo, al tomar como realidad última el juego de las partículas físicas, halló expresión en una civilización que glorifica la tecnología física conducente a fin de cuentas a las catástrofes de nuestro tiempo. Posiblemente el modelo del mundo como una gran organización ayude a reforzar el sentido de reverencia hacia lo viviente que casi hemos perdido en las últimas y sanguinarias décadas de la historia humana.

La teoría general de los sistemas en la educación: la producción de generalistas científicos

Después de este somero esbozo del significado y las metas de la teoría general de los sistemas, permitaseme hablar de algo que pudiera contribuir a la instrucción integrada. A fin de no parecer parcial, citaré a unos cuantos autores que no se dedicaban a desarrollar la teoría general de los sistemas.

Hace años apareció un artículo, «The Education of Scientific Generalists», escrito por un grupo de científicos, entre ellos el ingeniero Bode, el sociólogo Mosteller, el matemático Tukey y el biólogo Winsor. Los autores hicieron hincapié en «la necesidad de un enfoque más sencillo y unificado de los problemas científicos»:

Oímos con frecuencia que «un hombre no puede ya cubrir un campo suficientemente amplio», y que «hay demasiada especialización limitada»... Es necesario un enfoque más sencillo y unificado de los problemas científicos, necesitamos practicantes de la ciencia, no de una ciencia: en una palabra, necesitamos generalistas científicos. (Bode et al., 1949.)

Los autores ponían entonces en claro el cómo y el porqué de la necesidad de generalistas en campos como la fisicoquímica, la biofisica, la aplicación de la química, la fisica y las matemáticas a la medicina, y seguían diciendo:

Todo grupo de investigación necesita un generalista, trátese de un grupo institucional en una universidad o fundación, o de un grupo industrial... En un grupo de ingeniería, al generalista le incumbirian naturalmente los problemas de sistemas. Tales problemas surgen cuando se combinan partes en un todo equilibrado. (Bode et al., 1949.)

En un coloquio de la Foundation for Integrated Education, el profesor Mather (1951) discutió los «Integrative Studies for General Education». Afirmó que:

Una de las críticas a la educación general se basa en el hecho de que fácilmente degenera hacia la mera presentación de información tomada de tantos campos de indagación como alcancen a ser repasados en un semestre o un año... Quien oyese a estudiantes adelantados charlando, no dejaría de escuchar a alguno diciendo que «los profesores nos han atiborrado, pero

¿qué quiere decir todo esto?»... Más importante es la búsqueda de conceptos básicos y principios subyacentes que sean válidos en toda la extensión del conocimiento.

Respondiendo a propósito de la naturaleza de tales conceptos básicos. Mather dice:

Investigadores en campos muy diversos han dado independientemente con conceptos generales muy similares. Semeiantes correspondencias son tanto más significativas cuanto que se fundan en hechos totalmente diferentes. Ouienes las crearon solian desconocer las labores del prójimo. Partieron de filosofías encontradas, y aun así llegaron a conclusiones notablemente parecidas...

Así concebidos -- concluye Mather--, los estudios integrados demostrarían ser parte esencial de la búsqueda de comprensión de la realidad.

No parecen hacer falta comentarios. La instrucción habitual en física, biología, psicología o ciencias sociales las trata como dominios separados, y la tendencia general es hacer ciencias separadas de subdominios cada vez menores, proceso repetido hasta el punto de que cada especialidad se torna un área insignificante. sin nexos con lo demás. En contraste, las exigencias educativas de adiestrar «generalistas científicos» y de exponer «principios básicos» interdisciplinarios son precisamente las que la teoría general de los sistemas aspira a satisfacer. No se trata de un simple programa ni de piadosos deseos, ya que, como tratamos de mostrar, ya está alzándose una estructura teórica así. Vistas las cosas de este modo, la teoría general de los sistemas sería un importante auxilio a la síntesis interdisciplinaria y la educación integrada.

Ciencia y sociedad

Si hablamos de educación, sin embargo, no sólo nos referimos a valores científicos, es decir, a la comunicación e integración de hechos. También aludimos a los valores éticos, que contribuyen al desenvolvimiento de la personalidad. Habrá algo que ganar gracias a los puntos de vista que hemos discutido? Esto conduce al problema fundamental del valor de la ciencia en general, y de las ciencias sociales v de la conducta en particular.

Un argumento muy socorrido acerca del valor de la ciencia y de su repercusión en la sociedad y el bienestar de la humanidad dice más o menos esto: nuestro conocimiento de las leves de la física es excelente, y en consecuencia nuestro control tecnológico de la naturaleza inanimada es casi ilimitado. El conocimiento de las leves biológicas no va tan adelantado, pero si lo bastante para disponer en buena medida de tecnología biológica, en la moderna medicina y biología aplicada. Las esperanzas de vida son superiores a las que disfrutaba el ser humano en los últimos siglos v aun en las últimas décadas. La aplicación de los métodos modernos de agricultura y zootecnia científicas, etc. bastarian para sostener una población humana muy superior a la que hay actualmente en nuestro planeta. Lo que falta, sin embargo, es conocimiento de las leyes de la sociedad humana, y en consecuencia una tecnología sociológica. De ahí que los logros de la física se dediquen a la destrucción cada vez más eficiente; cunde el hambre en vastas partes del mundo mientras que en otras las cosechas se pudren o son destruidas; la guerra y la aniquilación indiferente de la vida humana, la cultura v los medios de subsistencia son el único modo de salir al paso de la fertilidad incontrolada y la consiguiente sobrepoblación. Tal es el resultado de que conozcamos y dominemos demasiado bien las fuerzas físicas, las biológicas medianamente. y las sociales en absoluto. Si dispusiéramos de una ciencia de la sociedad humana bien desarrollada y de la correspondiente tecnología, habría modo de escapar del caos y de la destrucción que amenaza a nuestro mundo actual.

Esto suena plausible, y en realidad no es sino una versión moderna del precepto platónico según el cual si gobernasen los filósofos la humanidad estaria salvada. Hay, no obstante, un defecto en la argumentación. Tenemos bastante idea de cómo sería un mundo cientificamente controlado. En el mejor de los casos, sería como el Mundo feliz de Huxley; en el peor, como el de 1984 de Orwell. Es un hecho empírico que los logros científicos se dedican tanto o más al uso destructivo que al constructivo. Las ciencias del comportamiento y la sociedad humanos no son excepciones. De hecho, acaso el máximo peligro de los sistemas del totalitarismo moderno resida en que estén tan alarmantemente al corriente no sólo en tecnología física y biológica, sino en la psicológica también. Los métodos de sugestión de masas, de liberación de instintos de la bestia humana, de condicionamiento y control del pensamiento,

están adelantados al máximo; es, ni más ni menos, por ser tan atrozmente científico por lo que el totalitarismo moderno hace que el absolutismo de otros tiempos parezca cosa de aficionados o ficción comparativamente inofensiva. El control científico de la sociedad no lleva a Utopía.

El precepto último: el hombre como individuo

Es concebible, sin embargo, la comprensión científica de la sociedad humana v de sus leves por un camino algo diferente v más modesto. Tal conocimiento no sólo nos enseñará lo que tienen de común en otras organizaciones el comportamiento y la sociedad humanos, sino también cuál es su unicidad. El postulado principal será: el hombre no es sólo un animal político; es, antes y sobre todo, un individuo. Los valores reales de la humanidad no son los que comparte con las entidades biológicas, con el funcionamiento de un organismo o una comunidad de animales, sino los que proceden de la mente individual. La sociedad humana no es una comunidad de hormigas o de termes, regida por instinto heredado y controlada por las leyes de la totalidad superordinada; se funda en los logros del individuo, y está perdida si se hace de éste una rueda de la máquina social. En mi opinión, tal es el precepto último que ofrece una teoría de la organización: no un manual para que dictadores de cualquier denominación sojuzguen con mayor eficiencia a los seres humanos aplicando científicamente las leves férreas, sino una advertencia de que el Leviatán de la organización no debe engullir al individuo si no quiere firmar su sentencia inapelable.

III. Consideración matemática elemental de algunos conceptos de sistema

El concepto de sistema

Al manejar complejos de «elementos» pueden establecerse tres tipos de distinción, a saber: (1) de acuerdo con su *número*; (2) de acuerdo con sus *especies*; (3) de acuerdo con las *relaciones* entre elementos. La siguiente ilustración sencilla aclarará esto (Fig. 3.1); aquí a y b simbolizan varios complejos.

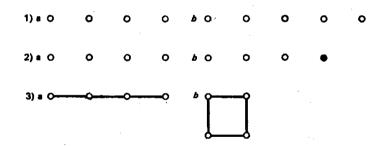


Fig. 3.1.

En los casos (1) y (2), el complejo puede ser comprendido (cf. pp. 68 ss) como suma de elementos considerados aisladamente. En el caso (3), no sólo hay que conocer los elementos, sino también las relaciones entre ellos. Características del primer tipo pueden llamarse sumativas, y constitutivas las del segundo. También podemos