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The brain continuously maintains a remarkably high level of intrinsic activity. This activity is non-stationary
and its dynamics reveal highly structured patterns across several spatial scales, from fine-grained functional
architecture in sensory cortices to large-scale networks. The mechanistic function of this activity is only poor-
ly understood. The central goal of the current review is to provide an integrated summary of recent studies on
structure, dynamics and behavioral consequences of spontaneous brain activity. In light of these empirical
observations we propose that the structure of ongoing activity and its itinerant nature can be understood
as an indispensible memory system modeling the statistical structure of the world. We review the dynamic
properties of ongoing activity, and how they are malleable over short to long temporal scales that permit
adapting over a range of short- to long-term cognitive challenges. We conclude by reviewing how the func-
tional significance of ongoing activity manifests in its impact on human action, perception, and higher cogni-
tive function.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The brain is often compared to a computer or related metaphors.
But unlike man-made computers that are highly modular the brains
themselves that designed such computers have a very different lay-
out. In the brain, the counterparts of a central processor, the software
and the data memory seem to be housed in one and the same entity.
This entity is the brain's wiring structure or “connectome”, a structure
that is continuously modified by memory traces from development
and experience. Radically different from computers, operational
memory encoded by the connectivity structure is permanently at
least partially replayed even in the absence of extrinsically induced
processing demands. This process underpins the observation of
“spontaneous” or intrinsic activity. Moment-to-moment fluctuations
of intrinsic activity hence reflect the past history of the system but
they also influence present and future operations. Current operations
in turn again leave traces and thereby shape the connectivity pattern.
In the following, we elaborate on this condensed sketch inmore detail.

First, we discuss this two-way relation between intrinsic brain
activity and operations underlying perception and behavior. The
material reviewed speaks to this interaction as an essential feature
of the brain's processing architecture rather than an epiphenomenon
of neurophysiological mechanisms. It further suggests that to ade-
quately understand brain function one needs to deepen the empirical
study of intrinsic neural activity and conceptually incorporate these
results into functional models.
adaghiani).
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Throughout this review, we discuss relevant research from the
perspective of what it tells us about the functional role of spontane-
ous brain activity. In the first section, we describe how the structure
of ongoing activity reflects a memory system modeling the statistical
structure of the world. We then discuss why brain function requires
such an internal model, and finally propose reasons for why this
model operates in an itinerant fashion. The second section characterizes
more closely the dynamic structure of ongoing activity.We discuss how
this structure is malleable over short to long temporal scales permitting
to adapt to cognitive challenges ranging from current perception to
gradual learning. The last section describes how, as a consequence, itin-
erant ongoing activity fluctuations affect human perception and
behavior.

The brain's internal memory of external causal dynamics

Functional importance of ongoing brain activity is suggested by
its continuous presence and its sheer amount on top of which evoked
brain responses appear as minor perturbations. Ongoing activity
hence accounts for the bulk of brain energy consumption, which in
turn constitutes 1/5 of total body energy expenditure (Raichle,
2009). The most striking property of intrinsic activity is that it fluctu-
ates spontaneously. Over several orders ofmagnitude across both time
and space these fluctuations are highly structured (for a discussion
on temporal and spatial characteristics see Sadaghiani et al., 2010).
We propose that this spatiotemporal structure of ongoing activity is
a way of replaying intrinsic, operational network memory. Here, we
use the termmemory to refer to the sum of the system's evolved con-
nections, recent activity history, and current context that are reflected
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in dynamic network states. The notion of memory thus encompasses
structural network connectivity (Fuster, 1997), functional connectivi-
ty continuously expressed on the structural connectivity backbone
(Lewis et al., 2009), and context-sensitive dynamics of these ongoing
activity patterns (Fontanini and Katz, 2008; Stopfer and Laurent,
1999). We thereby integrate several perspectives on memory. This
means that our usage of the term extends beyond the usual cognitive
notion of what memory is.

Orientation preference maps of primary visual cortex provide an
intuitively accessible illustration of network memory and of its con-
tinuous reactivation in a spatio-temporal activity structure. The spa-
tially ordered organization of orientation columns directly reflects
observable regularities of the world, specifically continuous edges
and contours of particular orientations. This structural organization
is expressed in functional connectivity through reactivation of and
rapid switching between different iso-orientation domains (~40 ms
per state, Kenet et al., 2003; cf. Fig. 1A). Importantly, these functional
dynamics are continuous as demonstrated during anesthesia, i.e., men-
tal states arguably lacking consciousness and perception. Although in
principle present at birth (Wiesel and Hubel, 1974), this mesoscopic
organization of structural (and by consequence functional) connectivity
is highly dependent upon and shaped by visual experience over the
course of early development. Cats raised in environments that lack cer-
tain spatial orientations will develop aberrant orientation preference
maps and show deficient perceptual responses to stimuli of the respec-
tive orientation (Blakemore and Cooper, 1970; Blasdel et al., 1977). No-
tably, experience- and activity-dependent changes continue to shape
these maps in the adult visual cortex (Dragoi et al., 2000; Godde et al.,
2002).

Recurrent co-activation patterns also occur at larger spatio-temporal
scales. At these scales they represent more complex levels of regulari-
ties in the environment, of our perceptions and actions in it, and of
our internal “world”. At the mesoscopic level illustrated above, the
spontaneous co-activation of corresponding orientation-selective neurons
spans across segregated hypercolumns. Similarly, at macroscopic scales
correlated activity occurs between neural populations in segregated but
functionally related brain regions. At the larger scale of visual field maps
Fig. 1.Hierarchical spatio-temporal structure of ongoing brain activity. A) On a very fine
spatial scale spontaneous activity in V1 displays highly structured spatio-temporal pat-
terns that closely resemble those evoked by selective stimulus features, i.e. edges and
contours of particular orientations (color coded according to visual angle). Ongoing
activity is coherent across neural populations with a similar orientation preference,
and switches iteratively between iso-orientation domains of the pinwheel maps. Opti-
cal imaging results from few mm2 of cat V1 under anesthesia (modified from Kenet
et al., 2003). B) On a larger spatial scale ongoing activity is spatio-temporally structured
in retinotopic maps. The color code illustrates the predictive power of V1 voxels (distri-
bution of weights of the optimal linear combination of signal time courses) to predict
spontaneous activity fluctuations of the V3 voxel marked by a white dot. The V1 area
of highest predictive power (dashed circle) corresponds to the same position in
retinotopic space as the predicted V3 voxel. Functional MRI of human occipital cortex
during resting wakefulness. Posterior view of the inflated occipital cortical surface
(modified from Heinzle et al., 2011). C) At a yet larger spatial scale spontaneous activity
delineates large subdivisions within visual cortices. These are driven by topographic
eccentricity, however, on a very coarse scale of a central (purple) and a peripheral
sub-system (bright red). Functionally connected regions include local sensory networks
such as the visual subdivisions, but also distributed networks of association regions.
Here, 17 intrinsic functional connectivity networks (ICNs, represented by different
colors) are estimated. D) These local and distributed ICNs can be defined at different
levels of the correlation hierarchy. This time, the brain is parceled into 7 ICNs, and sev-
eral ICNs previously segregated in finer subdivisions in B) are now unified into larger
ICNs at this coarser level of spatio-temporal organization. C–D) Human functional MRI
during resting wakefulness. Surface-based views of the left hemisphere. Areas that
show coherent activity fluctuations (functional connectivity) are marked by the same
color (modified from Yeo et al., 2011). This figure illustrates that multiple spatial levels
of functional connectivity are hierarchically embedded and concurrently present in the
brain. Note that temporal scale might be tightly linked to spatial scale. While spontane-
ous iso-orientation domains switch in tens of milliseconds (A) large-scale networks
observed with fMRI show activity fluctuations on the order of tens of seconds (C–D).
for example, activity in retinotopically corresponding neural populations
of V1 and V3 fluctuates coherently, as recently observed in humans using
fMRI in the absence of visual input (Heinzle et al., 2011; Fig. 1B). At the
largest scale, spontaneous co-fluctuations emerge over distant, func-
tionally connected brain regions giving rise to intrinsic connectivity
networks (ICNs, also referred to as resting state networks; Figs. 1C–D).

These large-scale networks have received much attention in the
recent neuroimaging literature — not least due to the slow neural ac-
tivity modulations at this spatial scale that are particularly well cap-
tured by the low pass filter characteristics of hemodynamic signals
(highest power below 0.1 Hz, Zarahn et al., 1997). Again, at least qual-
itatively, this intrinsic activity occurs across all mental states, includ-
ing engaged states (Eckert et al., 2009; Fair et al., 2007) as well as in
the absence of explicit cognitive task demands or even consciousness
(Fransson, 2005; Greicius et al., 2003, 2008; Horovitz et al., 2007).
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Similar to experience-dependent plasticity of functional architecture
within visual areas, the connectivity memory of ICNs evolves through
experience. Their rough connectivity structure forms during develop-
mental maturation (Dosenbach et al., 2010; Smyser et al., 2011). Im-
portantly, however, experience continuously shapes this matrix in
more subtle ways throughout life. We consider this process to be the
substrate offine-tuning of the internalmodel to ever-changing environ-
mental demands. In the next review section,wewill discuss these adap-
tive dynamics of intrinsic activity patterns at the macroscopic scale on
the basis of recent functional imaging findings.

These analogies across the range of spatio-temporal scales suggest
a generic role for ongoing activity. The spatial structure of ongoing ac-
tivity patterns shares features with patterns from neural ensembles
that are co-activated during stimulation or task performance. It there-
fore seems as if ongoing activity recapitulates processes or internal
contexts that are closely related to those evoked by tangible functional
demands that arise during specific activation paradigms where spe-
cific neural operations are driven by sensory input, instructed by cog-
nitive sets or result in actions. This holds true across spatio-temporal
scales, from e.g. orientation preference maps of visual cortex
(Tsodyks et al., 1999) to large-scale ICNs (Smith et al., 2009). In
terms of specific neural processes, at the microscopic level, it has
been observed that evoked population spiking patterns replay a sub-
set of all possible spatio-temporal patterns iteratively occurring in
spontaneous activity (Luczak et al., 2009). A close relation is also sup-
ported by the impact of ongoing activity fluctuations on subsequent
perception and behavior. Very recently for instance, it has been
shown that specific replay sequences over place cells predict future
navigation (Pfeiffer and Foster, 2013). Ongoing activity levels in special-
ized sensory regions also influence perception by introducing a bias to-
wards or against the respective preferred stimuli. Examples include an
impact of ongoing activity levels in fusiform face area (FFA) on face per-
ception (Hesselmann et al., 2008a), in motion-sensitive middle tempo-
ral region (MT+) on motion perception (Hesselmann et al., 2008b),
and in early auditory cortex on auditory perception (Sadaghiani et al.,
2009). An equivalent effect is observed for spontaneous behavioral var-
iability in higher order cognitive functions such as cognitive and atten-
tional control. This variability seems to be tied tofluctuations in ongoing
activity of large-scale networks that are engaged by the higher order
functions in task settings (Boly et al., 2007; Coste et al., 2011;
Sadaghiani et al., 2009). The content-specific and context-sensitive
fashion (Sadaghiani et al., 2009) in which ongoing activity impacts the
respective behavioral processes hence supports the notion that this ac-
tivity reflects at least in part processes akin to those observed during
task. This issue is discussed in detail in the last section of this review.

We next seek to understand why the brain is based on a constant-
ly active intrinsic memory system in spite of the large metabolic cost
incurred. A functional exploration of this question may be most in-
sightful, and formal frameworks may help to understand the role of
intrinsic activity. Regarding perception, it has been pointed out that
we operate (in the world) on the basis of sensory input that by itself
is too sparse, noisy and ambiguous to be interpretable (Kersten et al.,
2004; Lochmann and Deneve, 2011). In such a setting, sensory per-
ception is an experience-dependent, learned capacity (Tsodyks and
Gilbert, 2004). The ability to perceive and to continuously learn to
perceive more precisely develops gradually and automatically over
many repeated exposures to the respective stimuli. This ability is
being engraved in an adaptive network connectivity structure (cf.
e.g. orientation preference maps) that provides the basis for model-
driven perceptual inference. We suggest that such an internal model
is likely reflected in ongoing activity patterns (Hesselmann et al.,
2010; Sadaghiani et al., 2010). Notably, it is not the mere structural
connectivity but rather the current active synaptic circuitry or net-
work state that provides the indispensable operational context at
any given moment (Fontanini and Katz, 2008). The coherent intrinsic
activity patterns are robust and only slightly influenced by external
input. Hence, sensory evoked neural activity likely represents the
modulation of ongoing circuit dynamics by input signals, rather than
directly reflecting the structure of the input signal itself (Fiser et al.,
2004). In fact, as noted above, evoked neural responses are suggested
to be drawn from a larger set of possible spatio-temporal patterns ob-
served in spontaneous activity (Luczak et al., 2009). Ongoing activity
patterns may hence be thought to reflect an internal model of causal
dynamics in the world. The trajectory of this model corresponds to
the individual'’s perceptual, behavioral and emotional experiences.
An important clarification here is that only a small fraction of this
activity is likely to be introspectively accessible. In other words, our
consciousness of these processes is limited and consciousness is not
required for maintaining this trajectory. At any time point on its tra-
jectory this model generates varying, conscious or non-conscious pre-
dictions about the future. Put otherwise, different positions on the
trajectory correspond to different and specific predictions. These pre-
dictions are relevant and useful for a hierarchical inferencemachinery
that integrates prior information in form of non-random activity
states with current extrinsic operations such as interpreting sensory
input. However, this principle is not restricted to perceptual inference.
For example, motor control can be viewed as fulfilling prior expecta-
tions about proprioceptive sensations (Friston et al., 2010). And
motor learning is likewise reflected in the gradual incorporation and
optimization of Bayesian priors (Körding and Wolpert, 2004). In the
next section, we will discuss the emergence of motor learning as
changes in the intrinsic functional connectivity structure. More gener-
ally, in the suggested view, the brain seeks to predict consequences
of its actions. And this principle may well extend to higher cognitive
behaviors such as reward-based decision-making (Friston, 2010).
We propose that this process includes the incorporation of patterns
of past experience in the form of ongoing activity fluctuations into
moment-to-moment processing.

Importantly, ongoing activity dynamics also manifest in the ab-
sence of dynamic sensory information or behavioral demands. From
a functional perspective, just because sensory inputs are not currently
available the brain will not model the world as having stopped
(Sadaghiani et al., 2010). While real environments are continuously
changing and not fully transparent the brain maintains an active rep-
resentation of their attributes. Although dynamic this representation
can provide an informed computational context for current and po-
tentially upcoming operations. Another reason for the continuous ex-
pression of spontaneous activity is the indispensable role of intrinsic
replay of activity patterns for maintaining the biological substrate of
network memory. The most prominent example is the optimization
(consolidation) of synaptic connections during sleep (Diekelmann
and Born, 2010; Vyazovskiy et al., 2008). However, network and
memory consolidation is probably a prominent feature of ongoing ac-
tivity during wake states as well (Foster andWilson, 2006; Tambini et
al., 2010). Indirect support for a strong role of coherent intrinsic activ-
ity in network consolidation comes from its reverse process, i.e. the
degradation of functional connectivity patterns. Focal lesions to the
brain cause functional changes beyond the damaged area including
distant but functionally connected brain regions, a principle referred
to as diaschisis (Gratton et al., 2012). And in various forms of degen-
erative brain disease neural connections that coherently fire together
not only wire together but also die together (Seeley et al., 2009). This
phenomenon is possibly due to the absence of reverberating activity
for re-consolidation subsequent to a loss of neurons in the lesioned
network node. The degree to which intrinsic activity patterns return
towards normal values is associated with the rate of recovery of the
related cognitive and behavioral functions (He et al., 2007).

Above, we have proposed that ongoing activity across different
spatio-temporal scales may fulfill equivalent functions from a Bayesian
point of view. We acknowledge, however, that electrophysiological,
optical and functional imaging methods in the cited studies measure
very different signals potentially reflecting different neural processes.
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It therefore currently remains speculative whether spatiotemporal
structure displayed in ongoing activity at a very fine spatial scale is
caused by the same neural processes as structure on the level of the en-
tire brain. We here suggest, however, that an intrinsic memory-based
account of the brainmay bewell-suited to explain the function of spon-
taneous activity even across differing neural processes.

Another question concerns the fluctuating nature of intrinsic activ-
ity. At the mesoscopic neural level, intrinsic brain activity continuous-
ly switches between different competing and complimentary sensory
attributes such as the aforementioned orientation preference states
(Kenet et al., 2003) or spatial locations (Heinzle et al., 2011). At the
macroscopic level and very low speed, intrinsic brain activity continu-
ously wanders through distinct ICNs underlying different functions. It
is this very feature of intrinsic activity that has permitted characteriz-
ing brain networks on the basis of functional connectivity measures;
these measures describe the extent of itinerant activity (and not
stationary activity levels) thus exploiting the most prominent charac-
teristic of intrinsic functional networks. Ongoing activity fluctuations
often have very high amplitudes that are easily in the same range
as even strong evoked responses (Fox et al., 2006). Why is system
memory held on-line in an itinerant rather than more stable or tonic
manner?

Apart from possible biological limitations to sustained activity
we again take a functional approach to this question. In a Bayesian
view of the brain, intrinsic activity fluctuations correspond to the op-
timization or selection of competing internal models, using itinerant
searches over different hypotheses (models) about the world. Un-
structured fluctuations (or noise) in local ongoing activity are thought
to be the driving force that ensures these itinerant transitions between
different metastable neuronal network states (Deco et al., 2011;
Ghosh et al., 2008). For example, ongoing activity dynamics in the
spatio-temporal form of orientation maps have been successfully
modeled as noise-driven transitions between multistable attractors
of an intracortical network (Blumenfeld et al., 2006). Likewise, on
the larger scale of ICNs, spontaneous activity fluctuations emerge as
transitions between multistable network configurations on the back-
bone of a (relatively) stable anatomical skeleton (Deco et al., 2011).
These network configurations include not only the ICNs most often
“visited” by the brain, but also emerge and dissolve fluidly across
other, less stable configurations. This dynamics is proposed to reflect
the exploration of the array of cognitive architectures that the brain
has available (Deco et al, 2013). In the context of a Bayesian view,
these intrinsic activity fluctuations reflect the dynamic nature of the
underlying internal model. This model does not remain locked in a
stationary mode but stays malleable by continuously exploring hy-
potheses regarding future experience and action. Itinerant activity
has proven fruitful in modeling perception (e.g., Kiebel et al., 2009)
and planning (e.g., Namikawa and Tani, 2010). Supporting this ap-
proach, cortical activity has been formulated in terms of itinerant dy-
namics (e.g., Tsuda, 2001). Tsuda extends this model based on
neurodynamic itinerancy to a neural theory of (paradoxically stable)
episodic memory.

It is important to point out that the views expressed here are
not at odds with other accounts of the role of ongoing activity. A
more homeostatic metabolic take on ongoing activity for instance
considers a “housekeeping” role for ongoing activity where these pat-
terns mainly serve maintenance of synaptic circuits (Duyn, 2011;
Marder and Goaillard, 2006) and network consolidation (discussed
above). This view cannot be dissociated from the functional conse-
quences it would have on cognitive processes. And conversely, it is
hard to imagine how an internal model could be implemented in
the brain and continuously tuned without recurring to modifications
of synaptic circuitry. This link leads us to the next section where we
review recent functional imaging literature regarding the encoding
of experience and memory in terms of short-term and long-term
changes of ongoing activity fluctuation patterns.
Experience shapes intrinsic brain activity

Long-term memory, including declarative memory (acquired by
conscious effort or incidental to manipulation of items), and implicit
memory in perceptual and motor systems, are relatively stable phe-
nomena. Nonetheless, a large body of recent literature has investi-
gated their formation in terms of changes to the inherently dynamic
intrinsic activity fluctuations. Most of these studies apply a rest–
task–rest design comparing functional connectivity before and after
a training task of varying duration and nature. Lewis et al. (2009) in-
vestigated the effects of several days of intense training in a shape-
identification task. They observed changes in intrinsic connectivity
between visual areas and higher order frontal and parietal regions
that presumably generate visuospatial top-down predictions as for
instance expressed in the spatially selective allocation of attention.
Another field of particularly extensive research has been the motor
domain. Vahdat et al. (2011) used extensive sensorimotor training
on a force-field robot arm to separately investigate perceptual and
motor aspects of learning. They observed specific functional connec-
tivity changes within motor, cerebellar and somatosensory cortices
that were linearly related to individual rates of perceptual and motor
improvement. Ma et al. (2011) observed an increase in resting state
functional connectivity within motor-related areas accompanying
four weeks of daily sequential finger movement training. The above
studies of extensive learning in all likelihood involve structural con-
nectivity changes that impact the observed functional connectivity
changes. Taubert et al. (2010, 2011) concurrently investigated func-
tional and structural connectivity plasticity at multiple time points
along several sessions of whole-body balance training over 6 weeks.
They observed functional connectivity increases that were accompa-
nied by corresponding structural changes between supplementary
motor cortex and the parietal lobe. Both, functional and structural
measures changed with gradual improvement in motor performance.

However, plasticity of intrinsic functional connectivity also occurs
at time scales too short to involve gross structural connectivity
changes. A rapidly growing body of experiments has established dy-
namic short-term plasticity of intrinsic functional connectivity after
task exposure typically in the range of only 10–20 min duration with-
in the same MRI scanning session. Albert et al. (2009) observed in-
creased functional connectivity strength in the fronto-parietal top-
down control ICN and a cerebellar ICN after few minutes of motor
learning. No changes occurred in the control group engaged in a
movement task that did not require sensorimotor re-adjustments.
This short-term plasticity has likewise been explored in cognitive
learning. Tambini et al. (2010) selectively addressed functional con-
nectivity between hippocampus and the relevant visual category-
selective area after associative learning of picture pairs. They found
increased functional connectivity between these regions immediately
following the encoding task, the magnitude of which predicted differ-
ences in associative memory recall across participants after the scan-
ning session. As noted in the previous section, these results speak to a
role of replay as observed in ongoing activity patterns in the consoli-
dation of memory into structural changes. In other words, anatomical
connectivity is shaped by plasticity of functional connectivity. Func-
tional connectivity in turn is highly dynamic rather than being an
emergent property of uncorrelated noise played out on a structural
skeleton. Completing the analogy, the vertebrate skeleton is likewise
a slave to soft tissue. It provides a defining backbone to the muscula-
ture, yet repeated dynamic state changes from postures and move-
ments change the skeletal structure over time.

Regarding transient short-term memory, Barnes et al. (2009) ob-
served changes in spectral characteristics of ongoing activity in task-
related regions after a short n-back working memory task. These
changes gradually returned to pre-task baseline values after several
minutes, and recovery speed was dependent on working memory
load of the task.
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Notably, even in the absence of explicit or implicit memorization
load recent cognitive experience alters intrinsic connectivity patterns
for minutes after the exposure. Short engagement in a very simple vi-
sual classification tasks has been shown to increase functional cou-
pling between frontal cortex and the respective category-selective
visual areas (Stevens et al., 2010). Waites et al. (2005) report changes
in functional connectivity to task-related areas after only ~5 min
of silent language production. Even passive listening affects subse-
quent resting functional connectivity depending on language content
(Hasson et al., 2009). Duff et al. (2008) observed changes in spectral
characteristics of ongoing activity fluctuations within and beyond
motor areas following an easy sequential finger tapping task without
sensorimotor learning demands.

These findings indicate that ongoing activity patterns also express
the system'smemory of current or recent operational context. Electro-
physiological observations in sensory cortices suggest that the func-
tionally active synaptic circuitry, which ultimately manifests itself in
specific patterns of spontaneous activity, is the result of a combination
of sensory context, environmental contingencies, and experience
(Fontanini and Katz, 2008). As a prominent example of task-related
context, attention has been suggested to operate via changes to cur-
rent network state (Harris and Thiele, 2011). The functional imaging
results described above suggest that this principle likely extends to
the dynamics in large-scale ICNs.

One consequence of this observation is that it becomes question-
able whether a distinction between “true intrinsic” and context-
induced functional connectivity in imaging studies is meaningful. If,
as we argue, amajor function of ongoing activity stateswere to encode
the interaction of the current task and environmental setting with past
experience, then such a distinction may not be easily possible.

This leads to methodological challenges regarding the study of
functional connectivity during tasks. While the above dissociation
between task-induced and “truly” spontaneous functional connectiv-
ity may be problematic, a different dissociation may be necessary
for certain studies from a methodological point of view. This dissoci-
ation concerns functional connectivity (be it task-related or not) vs.
co-fluctuations in task-evoked responses. Any given task causes evoked
responses to individual trials or stimuli in a set of segregated regions. If
these responses are not sufficiently well removed or regressed out from
the signal time courses they may result in “trivial” apparent connectiv-
ity due to repeated task-induced co-activation of regions that may not
be necessarily functionally interacting. Of course, this criticism speaks
to the general problem of inferring functional connectivity in the
sense of cross-regional communication frommere correlations. And al-
though this point is particularly problematic in task settings, it may to
some extent concern resting states as well. Of note, evoked responses
show true (non-linear) interactionswith varying ongoing activity levels
rather than linearly adding up with them (see next section). This may
render sub-optimal the approach of regressing out an estimated av-
erage task-evoked response. Several studies have investigated func-
tional connectivity during task without removing evoked responses.
For example, seed-based approaches have been appliedwith a specif-
ic interest in regions exhibiting correlated activity (evoked or not) to cer-
tain regions of interest during different cognitive tasks (Eckert et al.,
2009). Another methodological approach to co-fluctuations during task
is beta series correlation analysis that explicitly measures fluctuations
in trial-by-trial evoked activity (Rissman et al., 2004), recognizing the
functional importance of trial-by-trial variability. A very different ap-
proach for whole-brain characterization of connectivity during task has
been global and nodal graph theory-basedmeasures as applied to corre-
lation matrices of the parceled brain, with (e.g. Fornito et al., 2012) or
without regressing out evoked responses (e.g. Ekman et al., 2012;
Moussa et al., 2011). In conclusion, whether or not evoked responses
should be accounted for will depend on the experimental question at
hand,while recognizing that a complete analytical segregation of evoked
and spontaneous activity may remain beyond our reach simply because
the biological processes are not separable (see non-linear interactions
discussed below).

Ultimately, investigating ongoing activity during task will be key
to understanding its functional raison d'être. In the next section, we
describe task studies that investigated functional consequences of
fluctuations in ongoing activity amplitudes rather than cross-regional
correlations of these fluctuations.

Intrinsic state impacts behavior

We argue in this review that ongoing brain activity is functionally
meaningful. The obvious way of probing this claim is to study its in-
fluence on task-evoked responses and behavior. In the following, we
will review functional imaging experiments that have done just that.

Fox et al. pursued this approach in the motor system. In a region
of primary sensorimotor cortex activated during unimanual button
presses they confirmed the commonly observed high trial-to-trial
evoked-response variability. They also measured activity in the motor
cortex ipsilateral to the hand performing button presses, i.e., contralat-
eral to the primarily task-related motor region. This region was defined
by intrinsic functional connectivity with the task-related motor cortex
region. They used these measures as a proxy of ongoing task-unrelated
activity and found that theirfluctuations accounted for a substantial pro-
portion of the evoked response variability in the functionally activated
motor cortex (Fox et al., 2006). Moreover, in a subsequent analysis
(Fox et al., 2007), they found that this variability was behaviorally rele-
vant. They observed a significant relationship between evoked response
levels (during the initial epoch of 2.2–4.3 s after button presses) of the
functionally activated motor region and spontaneously occurring vari-
ability in button-press force generated by the participants (although it
may not be straightforward how to interpret that lower ongoing activity
levels were observed for harder button presses). This finding is impor-
tant both from a physiological and a methodological perspective. Physi-
ologically, it implies that ongoing activity fluctuations are functionally
meaningful and translate into behavioral variability. In fact, this very
variability is the ongoing network dynamic in action (Fontanini and
Katz, 2008), and as discussed above, is the non-random manifestation
of context and memory into the current operation. The methodological
importance of this result lies in pointing out that analysis procedures
that remove trial-to-trial variability in event-related responses only
allow for a partial understanding of brain function and behavior and
can in fact obscure the continuity and history of brain processes. Such
methods assume the existence of a veridical evoked response that
linearly adds onto uncorrelated background noise. This assumption is
incorporated in conventionally applied event-related averaging, nor-
malization to pre-trial baseline, and subtraction/regression of ongoing
activity from time series. And commonly used general linear model
approaches in functional imaging studies explicitly estimate a single
evoked response amplitude over all repetitions of an event.

While Fox et al. studies show response variability to be behavior-
ally relevant, they still incorporate the basic assumption shared with
general linear models that the relation between ongoing and evoked
responses is inevitably additive. This assumption is subject to doubts
regarding its validity because the behaviorally relevant early activity
difference did not propagate linearly into the response peak as it
should under this assumption. Another potential limitation to studies
in the motor system is to consider activity in the contralateral motor
cortex an estimate of ongoing activity that is not subject to any con-
tamination by task-related activity. As stronger button presses are
associated with co-innervation of more proximal upper limb muscu-
lature which in turn is more bilaterally represented than distal move-
ments (Kleinschmidt and Toni, 2004), this effect in itself could
contribute to the experimental observations in motor cortex ipsilater-
al to the task side.

These two points, additivity of evoked and ongoing activity and
task-unrelated measures of ongoing brain activity, have been further
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investigated in perceptual studies of the functional impact of ongoing
activity on evoked and behavioral response variability. In previous
sections, we have developed a line of argument according to which
ongoing activity would be interpreted to represent an internal
model of attributes and regularities in the world and that this model
among other functions underlies prediction-based inference on the
causes of sensory input. Perceptual tasks using ambiguous or near-
threshold stimuli are therefore particularly well suited to harness
the effect of functional context as set by the current network activity
state. This is because as discussed above, internal representations
can serve perceptual inference on often sparse and ambiguous sensory
input in the real world.

Hesselmann et al. (2008a) asked participants to report their cate-
gorical percept on short presentations of Rubin's ambiguous vase–
faces figure. The random and very long inter-trial intervals (20–50 s)
un-obscured by evoked activity allowed using the prestimulus base-
line level as a measure of ongoing activity directly in the task-
relevant regions. Higher prestimulus ongoing activity level in the
right FFA, a region specialized for face processing, was found to bias
perception towards faces rather than a vase. The finding that higher
spontaneous levels of activity in task-sensitive regions impact percep-
tion was confirmed in a motion discrimination task (Hesselmann
et al., 2008b). Random-dot kinematograms were presented briefly at
subject-specific threshold coherence and again at long random inter-
trial intervals. This time, higher prestimulus activity levels in the
right motion-sensitive area (V5/hMT+) significantly impacted deci-
sions towards perception of coherent rather than random motion. In
both studies, results were selective to the respective perceptually spe-
cialized regions and no other areas showed prestimulus differences
between the alternative perceptual outcomes.

A functionally speaking crucial finding in both of these studies was
the occurrence of interactions between ongoing and evoked activity,
i.e., of a non-linear relationship. While predicted by several theoreti-
cal accounts (Buonomano and Maass, 2009; Friston, 2010), these ob-
servations were novel at the empirical level. In a seminal paper by
Arieli et al. (1996) for instance, the contribution of spontaneous activ-
ity to evoked response variability was reported as substantial but
appeared to respect linear additivity. In the anesthetized visual cortex
the addition of an averaged evoked response onto trial-by-trial base-
line activity levels very closely predicted the actual response observed
on each given trial. On the contrary, the imaging studies discussed
above (Hesselmann et al., 2008a,b) showed a significant interaction
between evoked and ongoing activities when predicting perceptual
outcome. Specifically, in the relevant areas (FFA or hMT+, respective-
ly) the activity levels during the peak of the evoked responsewere less
influenced by variations in prestimulus activity levels when faces
rather than a vase were perceived, and when coherent motion rather
than random motion was perceived. The basic mechanism here was
hence a reduced baseline-to-peak signal increase during trials with
higher as opposed to lower pre-stimulus activity. And this negative in-
teraction between ongoing and evoked activity was stronger in trials
where these areas were crucial for the perceptual decision (i.e. when
faces or coherent motion were perceived; cf. Fig. 4 in Sadaghiani
et al., 2010). In conclusion, the impact of ongoing activity on percep-
tion goes beyond a mere passive propagation of effects preceding
stimulus presentation.

Interestingly, in the aforementioned motor study (Fox et al.,
2007), evoked response peaks closely matched for hard and soft but-
ton presses in spite of different initial rising slopes (as also reflected
in different activity levels of the contra-lateral motor cortex). This ob-
servation may indicate similar non-linearities during active move-
ment (although the linear subtraction applied in that study assumes
linear summation). A recent analysis of the same motor response
dataset shows a reduction of trial-to-trial variability in widespread
cortical activity during the evoked response as compared to pre-trial
baseline, confirming the negative interaction of ongoing and evoked
activity (He, 2013). Similar to Fox et al. (2007) Schölvinck et al.
(2012) measured ongoing activity in a region functionally connected
to the stimulus-selective area, albeit in a different methodological
approach using psycho-physiologic interaction. In this study where
participants were asked to detect gratings at threshold visibility, the
authors observed no interaction between ongoing and evoked activi-
ties, although they confirmed a significant effect of ongoing activity
on perception. The authors speculate that in general non-linear inter-
actions may occur in higher-level areas such as FFA and hMT+
(Hesselmann et al., 2008a,b) but not in primary sensory cortices
such as V1 (Bianciardi et al., 2009; Schölvinck et al., 2012). Another
factor likely contributing to whether or not non-linear interactions
occur may be the general state, e.g. mainly linear effects during anes-
thesia (Arieli et al., 1996) or passive perception (Bianciardi et al.,
2009) and possible non-linear effects during active perceptual deci-
sions (Hesselmann et al., 2008a,b).

The interaction of stimulus-evoked and ongoing activity in sensory
areas supports a prominent role of ongoing activity in the brain's con-
structive interpretation of sensory input. More differentiated analyses
of this interaction (Hesselmann et al., 2010) suggest that ongoing ac-
tivity in sensory cortex represents not only itinerant predictions
about possible future perceptual contents but rather the convolution
of predictions with “precision” or gain. Given the noise in environ-
mental states or sensory input, optimal perception requires two dis-
tinct processes. The first is predicting the content of a percept (i.e.
the cause of the stimulus). If this prediction is perfect, it “explains
away” the sensory input. Any residual imperfection causes a predic-
tion error. This prediction error is an evoked response that provides
a signal to a higher hierarchical level indicating a need to change or re-
fine the prediction and thus iteratively reduce the prediction error to
zero (Friston, 2010). The second process involves properly inferring
the uncertainty or precision of the prediction (i.e. the probabilistic
context in which the stimulus appears). Precision is thus thought
to modulate the amplitude of prediction error responses, in other
words a gain control function (Friston, 2010). Precision is important
because for instance attention can exploit this mechanism. Many nat-
urally occurring prediction errors may be of little relevance to the in-
dividual and therefore the gain in processing them should remain
low for economic reasons. Conversely, in some settings, if prediction
error is highly relevant, it may be useful to amplify prediction error
so as to permit a full “explaining away”.

Regarding the functional nature of ongoing activity in sensory cor-
tices, several observations suggest that the dynamics of perception
are mainly determined by fluctuations in precision rather than pre-
dictions per se. First, deeply sagging levels in prestimulus activity of
sensory cortices lead to false alarms. This finding is compatible with
accounts of ongoing activity as precision-weighted prediction error
but not with a view where cortical signal is a proxy of sensory evi-
dence that if passing a threshold will entrain a perceptual decision
(Hesselmann et al., 2010). Furthermore, under bistable rivalry condi-
tions (such as Rubin's faces–vase figure discussed above) where the
causes of sensory input (predictions) are known to the subject and
remain identical, variability in perceptual outcome is likely governed
by fluctuations in precision (Kleinschmidt et al., 2012). For a detailed
discussion see Sadaghiani et al. (2010) and Kleinschmidt et al. (2012).

Perceptual outcome may be influenced by spontaneous activity
in brain areas far beyond the focal stimulus-selective regions. In a
somatosensory detection task, Boly et al. (2007) observed that
prestimulus activity levels in large distributed systems resembling
ICNs influenced whether or not threshold-level stimuli were per-
ceived. The system biasing towards successful detection comprised
areas of two cognitive control systems (cingulo-insular-thalamic and
fronto-parietal, cf. Dosenbach et al., 2007). Conversely, high ongoing
activity in areas of the default mode network biased towards missing
the stimulus. In an auditory threshold detection task Sadaghiani
et al. (2009) likewise observed a significant effect of ongoing activity



385S. Sadaghiani, A. Kleinschmidt / NeuroImage 80 (2013) 379–386
on perceptual outcome not only in stimulus-selective auditory cortex
but also in a number of distributed ICNs. While higher ongoing
prestimulus activity in the cingulo-insular-thalamic ICN as well as
the default mode ICN biased towards successful detection, higher
levels in the dorsal attention ICN lead to frequent misses. These two
studies as well as the study by Schölvinck et al. (2012) that also ob-
served perceptual effects from ongoing activity in cortex remote
from the stimulus-selective site all involved threshold detection para-
digms. It is likely that in such studies that involve all-or-none success
of detection, ongoing activity from large-scale ICNs becomes function-
ally pivotal. Conversely, in perceptual decision studies that involve a
choice between two closely matched alternatives, it would be the
purely local ongoing activity variations in the perceptually crucial
area that impact behavior (Hesselmann et al., 2008a,b). We conclude
that the spatial pattern within which ongoing activity affects behavior
is context-dependent and is detectable precisely at that position with-
in a hierarchical ongoing activity structure that best matches the func-
tional demands of a given context.

This conclusion also holds with respect to the sign of this impact
that can be facilitatory or detrimental. The functional consequences
of itinerant reactivation of any given network will depend on the
role of that network in the context of the task at hand. As an example,
high spontaneous activity levels in the default-mode network, com-
monly thought of as “task-negative”, may be facilitatory in certain
task settings (Fornito et al., 2012; Sadaghiani et al., 2009, cf. discus-
sion in Sadaghiani et al., 2010).

So far, functional consequences of intrinsic activity fluctuations
have mainly been studied in simple perceptual decisions and motor
behavior. Coste et al. (2011) reported that this mechanism is as rele-
vant for higher cognitive functions such as top-down control. They
used a Stroop color-naming task in which color-word interference
on incongruent stimuli caused strong reaction time variability both
within as well as across participants. Across individuals, sensitivity
to prestimulus activity fluctuations in task-relevant regions scaled
with the subject's cognitive susceptibility to Stroop interference. In
terms of within-subject variability, in participants who showed reac-
tion time slowing due to Stroop interference, ongoing prestimulus
activity significantly differed between fast and slow responses. In sen-
sory areas, the direction of this effect was again dependent on the
functional role of the region in the particular task; while higher ongo-
ing activity in task-relevant color-sensitive regions predicted fast re-
sponses, it biased towards slower responses in the task-interfering
word-form area. Crucially, the strongest impact of prestimulus activ-
ity was observed in prefrontal cognitive control regions. In particular,
prestimulus activity was higher prior to fast responses or successful
cognitive control, in dorsal anterior cingulate and dorsolateral prefrontal
cortices (dACC, DLPFC), the two regions most consistently implicated in
Stroop task control (MacDonald et al., 2000). The inter-individual differ-
ences in these effects speak to the interpretation of itinerant background
activity as exploration of the brain's “dynamic repertoire” (Ghosh et al.,
2008) that keeps the brain malleable (discussed above). In subjects
with greater behavioral interference effects, larger fluctuations in behav-
iorally relevant prestimulus activity likely reflect a greater range of dy-
namic exploration. In other words, the “rigidity” of mind set that
underpins task compliance and optimally avoids interference effects in
certain cognitive settings, may not be optimal under changing or incom-
pletely transparent task requirements often encountered in the real
world (Coste et al., 2011).

Conclusions

The study of ongoing brain activity fluctuations has had several re-
markable consequences. A practical and relevant one is medical utility
because resting state studies are feasible in patient populations that
are difficult to study in activation paradigms. This application pro-
duces new insight into the relation between brain function and clinical
phenotype. Another consequence is methodological and expressed
in the arrival of exploratory data-driven analysis techniques to com-
plement paradigm-related approaches. Finally, from a neuroscience
view, studies as those reviewed here have served to renew the interest
in tracking continuous real-time brain activity records in relation to
perception and action rather than charting average sequences of
stimulus-driven or action-related activity changes. To some extent,
this can be compared to the relation of constructivist and behaviorist
views on brain function, where the former emphasizes a crucial role
of active agency as in for instance inference in perceptual synthesis
(Friston, 2010). The past trajectory of the brain's internal model is
reflected in moment-to-moment ongoing activity states. These states
are sensitive to current context and non-linearly interact with incom-
ing sensory information. The presence of interactions renders a full
separation of “true intrinsic” from context-induced and stimulus-
evoked activity analytically virtually impossible, and conceptually in-
complete. One important observation emerging from recent findings
is that the intrinsic and spontaneous dynamics of brain activity seem
to explore the space of possible brain states along very similar trajec-
tories as those which can be induced by different task contexts. This
observation, namely that ongoing brain activity is spatio-temporally
highly organized into intrinsic functionally meaningful networks,
has also mediated another shift of emphasis, from localizationist/
segregationist views, which have dominated functional neuroanatom-
ical studies for a long time, back to a greater appreciation of large-scale
interactions and integration across brain regions.
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